SLLS516E August 2002 – July 2015 SN65LVDS100 , SN65LVDS101 , SN65LVDT100 , SN65LVDT101
UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.
請(qǐng)參考 PDF 數(shù)據(jù)表獲取器件具體的封裝圖。
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| VCC | Supply voltage range(2) | –0.5 | 4 | V |
| IBB | VBB output current | –0.5 | 0.5 | mA |
| VI | Voltage range, (A, B, Y, Z) | 0 | 4.3 | V |
| VO | ||||
| VID | Differential voltage, |VA – VB| ('LVDT100 and 'LVDT101 only) | 1 | V |
| VALUE | UNIT | ||||
|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | Pins 2, 3, 5, 6, 7 | ±5000 | V |
| All pins except 2, 3, 5, 6, 7 | ±2000 | V | |||
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1500 | V | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| Supply voltage, VCC | 3 | 3.3 | 3.6 | V | |
| Magnitude of differential input voltage |VID| | 'LVDS100 or 'LVDS101 | 0.1 | 1 | V | |
| 'LVDT100 or 'LVDT101 | 0.1 | 0.8 | |||
| Input voltage (any combination of common-mode or input signals), VI | 0 | 4 | V | ||
| VBB output current, IO(VBB) | –400(1) | 12 | µA | ||
| Operating free-air temperature, TA | –40 | 85 | °C | ||
| THERMAL METRIC(1) | SN65LVDS100, SN65LVDT100, SN65LVDS101, SN65LVDT101 | UNIT | ||
|---|---|---|---|---|
| D | DGK | |||
| 8 PINS | 8 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 208 | 263 | °C/W |
| Power dissipation rating: TA ≤ 25°C | 151 | 377 | mW | |
| Power dissipation rating: TA ≤ 85°C | 192 | 481 | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
|---|---|---|---|---|---|---|
| ICC | Supply current, 'LVDx100 | No load or input | 25 | 30 | mA | |
| Supply current, 'LVDx101 | RL = 50 Ω to 1 V, No input | 50 | 61 | |||
| PD | Device power dissipation, 'LVDx100 | RL = 100 Ω, No input | 110 | mW | ||
| Device power dissipation, 'LVDx101 | Y and Z to VCC – 2 V through 50 Ω No input |
116 | 142 | |||
| VBB | Reference voltage output, 'LVDS100 or 'LVDS101 | IO = –400 µA or 12 µA | VCC – 1.4 | VCC – 1.35 | VCC – 1.3 | mV |
| SN65LVDS100 and SN65LVDS101 INPUT CHARACTERISTICS (see Figure 30) | ||||||
| VIT+ | Positive-going differential input voltage threshold | See Figure 30 and Table 1 | 100 | mV | ||
| VIT– | Negative-going differential input voltage threshold | –100 | ||||
| II | Input current | VI = 0 V or 2.4 V Second input at 1.2 V |
–20 | 20 | µA | |
| VI = 4 V, Second input at 1.2 V | 33 | µA | ||||
| II(OFF) | Power off input current | VCC = 1.5 V, VI = 0 V or 2.4 V Second input at 1.2 V |
–20 | 20 | µA | |
| VCC = 1.5 V, VI = 4 V Second input at 1.2 V |
33 | |||||
| IIO | Input offset current (|IIA - IIB|) | VIA = VIB, 0 ≤ VIA ≤ 4 V | –6 | 6 | µA | |
| Ci | Small-signal input capacitance to GND | VI = 1.2 V | 0.6 | pF | ||
| SN65LVDT100 and SN65LVDT101 INPUT CHARACTERISTICS (see Figure 30) | ||||||
| VIT+ | Positive-going differential input voltage threshold | See Figure 30 and Table 1 | 100 | mV | ||
| VIT– | Negative-going differential input voltage threshold | –100 | ||||
| II | Input current | VI = 0 V or 2.4 V, Other input open | –40 | 40 | µA | |
| VI = 4 V, Other input open | 66 | |||||
| II(OFF) | Power off input current | VCC = 1.5 V, VI = 0 V or 2.4 V Other input open |
–40 | 40 | µA | |
| VCC = 1.5 V, VI = 4 V Other input open |
66 | |||||
| R(T) | Differential input resistance | VID = 300 mV or 500 mV VIC = 0 V or 2.4 V |
90 | 110 | 132 | Ω |
| VCC = 0 V, VID = 300 mV or 500 mV VIC = 0 V or 2.4 V |
90 | 110 | 132 | |||
| Ci | Small-signal differential input capacitance | VI = 1.2 V | 0.6 | pF | ||
| SN65LVDS100 and SN65LVDT100 OUTPUT CHARACTERISTICS (see Figure 30) | ||||||
| |VOD| | Differential output voltage magnitude | See Figure 31 | 247 | 340 | 454 | mV |
| Δ|VOD| | Change in differential output voltage magnitude between logic states | –50 | 50 | |||
| VOC(SS) | Steady-state common-mode output voltage | See Figure 32 | 1.125 | 1.375 | V | |
| ΔVOC(SS) | Change in steady-state common-mode output voltage between logic states | –50 | 50 | mV | ||
| VOC(PP) | Peak-to-peak common-mode output voltage | 50 | 150 | mV | ||
| IOS | Short-circuit output current | VO(Y) or VO(Z) = 0 V | –24 | 24 | mA | |
| IOS(D) | Differential short-circuit output current | VOD = 0 V | –12 | 12 | mA | |
| SN65LVDS101 and SN65LVDT101 OUTPUT CHARACTERISTICS (see Figure 30) | ||||||
| VOH | High-level output voltage | 50 Ω to VCC – 2 V, See Figure 39 | VCC – 1.25 | VCC – 1.02 | VCC – 0.9 | V |
| VCC = 3.3 V, 50-Ω load to 2.3 V | 2055 | 2280 | 2405 | mV | ||
| VOL | Low-level output voltage | 50 Ω to VCC – 2 V, See Figure 39 | VCC – 1.83 | VCC – 1.61 | VCC – 1.53 | V |
| VCC = 3.3 V, 50-Ω load to 2.3 V | 1475 | 1690 | 1775 | mV | ||
| |VOD| | Differential output voltage magnitude | 50-Ω load to VCC – 2 V, See Figure 39 | 475 | 575 | 750 | mV |
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| tPLH | Propagation delay time, low-to-high-level output | 'LVDx100 | See Figure 33 | 300 | 470 | 800 | ps |
| 'LVDx101 | 400 | 630 | 900 | ||||
| tPHL | Propagation delay time, high-to-low-level output | 'LVDx100 | 300 | 470 | 800 | ps | |
| 'LVDx100 | 400 | 630 | 900 | ||||
| tr | Differential output signal rise time (20% to 80%) | 220 | ps | ||||
| tf | Differential output signal fall time (20% to 80%) | 220 | ps | ||||
| tsk(p) | Pulse skew (|tPHL – tPLH|)(2) | 5 | 50 | ps | |||
| tsk(pp) | Part-to-part skew(3) | VID = 0.2 V, See Figure 33 | 100 | ps | |||
| tjit(per) | RMS period jitter(4) | 1 GHz 50% duty-cycle square-wave input VID = 200 mV, VIC = 1.2 V See Figure 34 |
1 | 3.7 | ps | ||
| tjit(cc) | Peak cycle-to-cycle jitter(5) | 6 | 23 | ps | |||
| tjit(pp) | Peak-to-peak jitter | 2 GHz PRBS, 223 – 1 run length VID = 200 mV, VIC = 1.2 V See Figure 34 |
28 | 65 | ps | ||
| tjit(det) | Peak-to-peak deterministic jitter(6) | 2 GHz PRBS, 27 – 1 run length VID = 200 mV, VIC = 1.2 V See Figure 34 |
17 | 48 | ps | ||
Figure 1. Supply Current vs Frequency
Figure 3. Differential Output Voltage vs Frequency
Figure 5. SN65LVDS101 Propagation Delay Time vs Common-Mode Input Voltage
Figure 7. SN65LVDS101 Propagation Delay Time vs Free-Air Temperature
Figure 9. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
Figure 11. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
Figure 13. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
Figure 15. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
Figure 17. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
Figure 19. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
Figure 21. SN65LVDS100 Differential Output Voltage vs Frequency
Figure 23. SN65LVDS101 Differential Output Voltage vs Frequency
Figure 2. Supply Current vs Free-Air Temperature
Figure 4. SN65LVDS100 Propagation Delay Time vs Common-Mode Input Voltage
Figure 6. SN65LVDS100 Propagation Delay Time vs Free-Air Temperature
Figure 8. SN65LVDS100 Peak-to-Peak Jitter vs Frequency
Figure 10. SN65LVDS101 Peak-to-Peak Jitter vs Frequency
Figure 12. SN65LVDS100 Peak-to-Peak Jitter vs Frequency
Figure 14. SN65LVDS101 Peak-to-Peak Jitter vs Frequency
Figure 16. SN65LVDS100 Peak-to-Peak Jitter vs Frequency
Figure 18. SN65LVDS101 Peak-to-Peak Jitter vs Frequency
Figure 20. SN65LVDS100 Peak-to-Peak Jitter vs Free-Air Temperature
Figure 22. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
Figure 24. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
Figure 25. SN65LVDS100 Mbps, 223 – 1 PRBS
Figure 27. SN65LVDS101 Mbps, 223 – 1 PRBS

NOTE:
VIT is a steady-state parameter. The switching time is influenced by the input overdrive above this steady-state threshold up to a differential input voltage magnitude of 100 mV.
Figure 26. SN65LVDS100 Gbps, 223 – 1 PRBS
Figure 28. SN65LVDS101 Gbps, 223 – 1 PRBS