SNOS738I April 1995 – January 2017 LM9061 , LM9061-Q1
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| Supply voltage | 60 | V | ||
| Output voltage | VCC + 15 | V | ||
| Voltage at sense and threshold (through 1 kΩ) | −25 | 60 | V | |
| ON/OFF input voltage | −0.3 | VCC + 0.3 | V | |
| Reverse supply current | 20 | mA | ||
| Junction temperature | 150 | °C | ||
| Lead temperature soldering, 10 seconds | 260 | °C | ||
| Storage temperature, Tstg | −55 | 150 | °C | |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
| VALUE | UNIT | ||||
|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±2000 | V | |
| Charged-device model (CDM), per AEC Q100-011 | All pins except 1, 4, 5, and 8 | ±1000 | |||
| Pins 1, 4, 5, and 8 | ±1000 | ||||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| Supply voltage | 7 | 26 | V | ||
| ON/OFF input voltage | −0.3 | VCC | V | ||
| Ambient temperature: LM9061 | −40 | 125 | °C | ||
| Junction temperature: LM9061-Q1 | −40 | 125 | °C | ||
| THERMAL METRIC(1) | LM9061, LM9061-Q1 | UNIT | |
|---|---|---|---|
| D (SOIC) | |||
| 8 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 150 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 46.7 | °C/W |
| RθJB | Junction-to-board thermal resistance | 49.1 | °C/W |
| ψJT | Junction-to-top characterization parameter | 6.2 | °C/W |
| ψJB | Junction-to-board characterization parameter | 48.4 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| POWER SUPPLY | ||||||
| IQ | Quiescent supply current | ON/OFF = 0 | 5 | mA | ||
| ICC | Operating supply current | ON/OFF = 1, CLOAD = 0.025 µF, includes turnon transient output current |
40 | mA | ||
| ON/OFF CONTROL INPUT | ||||||
| VIN(0) | ON/OFF input logic 0 | VOUT = OFF | 1.5 | V | ||
| VIN(1) | ON/OFF input logic 1 | VOUT = ON | 3.5 | V | ||
| VHYST | ON/OFF input hysteresis | Peak-to-peak | 0.8 | 2 | V | |
| IIN | ON/OFF input pulldown current | VON/OFF = 5 V | 50 | 250 | µA | |
| GATE DRIVE OUTPUT | ||||||
| VOH | Charge pump output voltage | ON/OFF = 1 | VCC + 7 | VCC + 15 | V | |
| VOL | OFF output voltage | ON/OFF = 0, ISINK = 110 µA | 0.9 | V | ||
| VCLAMP | Sense to output clamp voltage |
ON/OFF = 1, VSENSE = VTHRESHOLD |
11 | 15 | V | |
| ISINK(Normal-OFF) | Output sink current normal operation |
ON/OFF = 0, VDELAY = 0 V, VSENSE = VTHRESHOLD |
75 | 145 | µA | |
| ISINK(Latch-OFF) | Output sink current with protection comparator tripped |
VDELAY = 7 V, VSENSE < VTHRESHOLD |
5 | 15 | µA | |
| PROTECTION CIRCUITRY | ||||||
| VREF | Reference voltage | 1.15 | 1.35 | V | ||
| IREF | Threshold pin reference current | VSENSE = VTHRESHOLD | 75 | 88 | µA | |
| ITHR(LEAKAGE) | Threshold pin leakage current | VCC = Open, 7 V ≤ VTHRESHOLD ≤ 20 V | 10 | µA | ||
| ISENSE | Sense pin input bias current | VSENSE = VTHRESHOLD | 10 | µA | ||
| DELAY TIMER | ||||||
| VTIMER | Delay timer threshold voltage | 5 | 6.2 | V | ||
| VSAT | Discharge transistor saturation voltage | IDIS = 1 mA | 0.4 | V | ||
| IDIS | Delay capacitor discharge current | VDELAY = 5 V | 2 | 10 | mA | |
| IDELAY | Delay pin source current | 6.74 | 15.44 | µA | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| TON | Output turnon time | CLOAD = 0.025 µF | 7V ≤ VCC ≤ 10 V, VOUT ≥ VCC + 7 V | 1.5 | ms | ||
| 10V ≤ VCC ≤ 20 V, VOUT ≥ VCC + 11 V | 1.5 | ||||||
| TOFF(NORMAL) | Output turnoff time, normal operation(2) |
CLOAD = 0.025 µF VCC = 14 V, VOUT ≥ 25 V VSENSE = VTHRESHOLD |
4 | 10 | ms | ||
| TOFF(Latch-OFF) | Output turnoff time, protection comparator tripped(2) |
CLOAD = 0.025 µF VCC = 14 V, VOUT ≥ 25 V VSENSE = VTHRESHOLD |
45 | 140 | ms | ||
| TDELAY | Delay timer interval | CDELAY = 0.022 µF | 8 | 18 | ms | ||
Figure 1. Typical Operating Waveforms
Figure 2. Timing Definitions
Figure 3. Standby Supply Current vs VCC
Figure 5. Output Voltage vs VCC
Figure 7. Output Sink Current vs Temperature
Figure 9. Reference Voltage vs Temperature
Figure 11. Delay Charge Current vs Temperature
Figure 4. Operating Supply Current vs VCC
Figure 6. Output Sink Current vs Temperature
Figure 8. Output Source Current vs Output Voltage
Figure 10. Delay Threshold vs Temperature