SNLS045C July 1999 – July 2016 DS90LV048A
PRODUCTION DATA.
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| Supply voltage (VCC) | –0.3 | 4 | V | ||
| Input voltage (RIN+, RIN−) | –0.3 | 3.6 | V | ||
| Enable input voltage (EN, EN*) | –0.3 | VCC + 0.3 | V | ||
| Output voltage (ROUT) | –0.3 | VCC + 0.3 | V | ||
| Maximum package power dissipation at +25°C | D0016A package | 1025 | mW | ||
| PW0016A package | 866 | ||||
| Derate D0016A package | above +25°C | 8.2 | mW/°C | ||
| Derate PW0016A package | above +25°C | 6.9 | |||
| Lead temperature soldering | (4 s) | 260 | °C | ||
| Maximum junction temperature | 150 | °C | |||
| Storage temperature, Tstg | –65 | 150 | °C | ||
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge(1) | Human-body model (HBM) | ±10000 | V |
| Machine model | ±1200 | |||
| MIN | NOM | MAX | UNIT | |
|---|---|---|---|---|
| Supply voltage, VCC | 3 | 3.3 | 3.6 | V |
| Receiver input voltage | GND | 3 | V | |
| Operating free air temperature, TA | −40 | 25 | 85 | °C |
| THERMAL METRIC(1) | DS90LV048A | UNIT | |
|---|---|---|---|
| PW (TSSOP) | |||
| 16 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 110.2 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 47 | °C/W |
| RθJB | Junction-to-board thermal resistance | 54.7 | °C/W |
| ψJT | Junction-to-top characterization parameter | 6.1 | °C/W |
| ψJB | Junction-to-board characterization parameter | 54.2 | °C/W |
| PARAMETER | TEST CONDITIONS | PIN | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|---|
| VTH | Differential input high threshold | VCM = +1.2 V, 0.05 V, 2.95 V(3) | RIN+, RIN− | −35 | 0 | mV | ||
| VTL | Differential input low threshold | −100 | −35 | mV | ||||
| VCMR | Common-mode voltage range | VID = 200 mV peak to peak?(4) | 0.1 | 2.3 | V | |||
| IIN | Input current | VIN = +2.8 V | VCC = 3.6 V or 0 V | −10 | ±5 | 10 | μA | |
| VIN = 0 V | −10 | ±1 | 10 | |||||
| VIN = +3.6 V | VCC = 0 V | –20 | ±1 | 20 | ||||
| VOH | Output high voltage | IOH = −0.4 mA, VID = +200 mV | ROUT | 2.7 | 3.3 | V | ||
| IOH = −0.4 mA, input terminated | 2.7 | 3.3 | ||||||
| IOH = −0.4 mA, input shorted | 2.7 | 3.3 | ||||||
| VOL | Output low voltage | IOL = 2 mA, VID = −200 mV | 0.05 | 0.25 | V | |||
| IOS | Output short-circuit current | Enabled, VOUT = 0 V(5) | −15 | −47 | −100 | mA | ||
| IOZ | Output TRI-STATE current | Disabled, VOUT = 0 V or VCC | −10 | ±1 | 10 | μA | ||
| VIH | Input high voltage | EN, EN* | 2 | VCC | V | |||
| VIL | Input low voltage | GND | 0.8 | V | ||||
| II | Input current | VIN = 0 V or VCC, other Input = VCC or GND | −10 | ±5 | 10 | μA | ||
| VCL | Input clamp voltage | ICL = −18 mA | −1.5 | −0.8 | V | |||
| ICC | No load supply current receivers enabled |
EN = VCC, inputs open | VCC | 9 | 15 | mA | ||
| ICCZ | No load supply current receivers disabled |
EN = GND, inputs open | 1 | 5 | mA | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tPHLD | Differential propagation delay high to low | CL = 15 pF VID = 200 mV (Figure 15 and Figure 16) |
1.2 | 2 | 2.7 | ns |
| tPLHD | Differential propagation delay low to high | 1.2 | 1.9 | 2.7 | ns | |
| tSKD1 | Differential pulse skew |tPHLD − tPLHD|(3) | 0 | 0.1 | 0.4 | ns | |
| tSKD2 | Differential channel-to-channel skew; same device(4) | 0 | 0.15 | 0.5 | ns | |
| tSKD3 | Differential part-to-part skew(5) | 1 | ns | |||
| tSKD4 | Differential part-to-part skew(6) | 1.5 | ns | |||
| tTLH | Rise time | 0.5 | 1 | ns | ||
| tTHL | Fall time | 0.35 | 1 | ns | ||
| tPHZ | Disable time high to Z | RL = 2 kΩ CL = 15 pF (Figure 17 and Figure 18) |
8 | 14 | ns | |
| tPLZ | Disable time low to Z | 8 | 14 | ns | ||
| tPZH | Enable time Z to high | 9 | 14 | ns | ||
| tPZL | Enable time Z to low | 9 | 14 | ns | ||
| fMAX | Maximum operating frequency(7) | All channels switching | 200 | 250 | MHz | |
Figure 1. Output High Voltage vs Power Supply Voltage
Figure 3. Output Short-Circuit Current vs Power Supply Voltage
Figure 5. Differential Transition Voltage vs Power Supply Voltage
Figure 7. Differential Propagation Delay vs Power Supply Voltage
Figure 9. Differential Propagation Delay vs Differential Input Voltage
Figure 11. Differential Skew vs Power Supply Voltage
Figure 13. Transition Time vs Power Supply Voltage
Figure 2. Output Low Voltage vs Power Supply Voltage
Figure 4. Output TRI-STATE Current vs Power Supply Voltage
Figure 6. Power Supply Current vs Ambient Temperature
Figure 8. Differential Propagation Delay vs Ambient Temperature
Figure 10. Differential Propagation Delay vs Common-Mode Voltage
Figure 12. Differential Skew vs Ambient Temperature