SN74HC163-Q1
- Qualified for Automotive Applications
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80-μA Max ICC
- Typical tpd = 14 ns
- ±4-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
This synchronous, presettable counter features an internal carry look-ahead for application in high-speed counting designs. The SN74HC163 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.
This counter is fully programmable; that is, it can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.
The clear function for the SN74HC163 is synchronous. A low level at the clear (CLR) input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR to synchronously clear the counter to 0000 (LLLL).
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.
This counter features a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD\) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.
您可能感興趣的相似產(chǎn)品
功能與比較器件相似
技術(shù)文檔
設(shè)計和開發(fā)
如需其他信息或資源,請點擊以下任一標(biāo)題進入詳情頁面查看(如有)。
14-24-LOGIC-EVM — 采用 14 引腳至 24 引腳 D、DB、DGV、DW、DYY、NS 和 PW 封裝的邏輯產(chǎn)品通用評估模塊
14-24-LOGIC-EVM 評估模塊 (EVM) 設(shè)計用于支持采用 14 引腳至 24 引腳 D、DW、DB、NS、PW、DYY 或 DGV 封裝的任何邏輯器件。
| 封裝 | 引腳 | CAD 符號、封裝和 3D 模型 |
|---|---|---|
| TSSOP (PW) | 16 | Ultra Librarian |
訂購和質(zhì)量
- RoHS
- REACH
- 器件標(biāo)識
- 引腳鍍層/焊球材料
- MSL 等級/回流焊峰值溫度
- MTBF/時基故障估算
- 材料成分
- 鑒定摘要
- 持續(xù)可靠性監(jiān)測
- 制造廠地點
- 封裝廠地點