SLVS314F SEPTEMBER 2000 – August 2015 TPS61010 , TPS61012 , TPS61013 , TPS61014 , TPS61015 , TPS61016
PRODUCTION DATA.
請參考 PDF 數(shù)據(jù)表獲取器件具體的封裝圖。
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| Input voltage | VBAT, VOUT, EN, LBI, FB, ADEN | –0.3 | 3.6 | V |
| SW | –0.3 | 7 | V | |
| Voltage | LBO, COMP | –0.3 | 3.6 | V |
| Operating free-air temperature range, TA | –40 | 85 | °C | |
| Maximum junction temperature, TJ | 150 | °C | ||
| Storage temperature range, Tstg | –65 | 150 | °C | |
| VALUEMAX | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) | ±2000 | V |
| Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) | ±1000 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| VI | Supply voltage at VBAT | 0.8 | VOUT | V | |
| IO | Maximum output current at VIN = 1.2 V | 100 | mA | ||
| IO | Maximum output current at VIN = 2.4 V | 200 | mA | ||
| L1 | Inductor | 10 | 33 | µH | |
| CI | Input capacitor | 10 | µF | ||
| Co | Output capacitor | 10 | 22 | 47 | µF |
| TJ | Operating virtual junction temperature | –40 | 125 | °C | |
| THERMAL METRIC(1) | TPS6101x | TPS61010 | UNIT | |
|---|---|---|---|---|
| DGS | DRC | |||
| 10 PINS | ||||
| RθJA | Junction-to-ambient thermal resistance | 161.8 | 43.1 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 36.3 | 67.4 | |
| RθJB | Junction-to-board thermal resistance | 82.7 | 18.1 | |
| ψJT | Junction-to-top characterization parameter | 1.3 | 1.6 | |
| ψJB | Junction-to-board characterization parameter | 81.1 | 18.2 | |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | N/A | 5.2 | |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VI | Minimum input voltage for start-up | RL = 33 Ω | 0.85 | 0.9 | V | ||
| RL = 3 kΩ, TA = 25 °C | 0.8 | ||||||
| Input voltage once started | IO = 100 mA | 0.8 | |||||
| VO | Programmable output voltage range |
TPS61010, IOUT = 100 mA | 1.5 | 3.3 | V | ||
| Output voltage | TPS61011, 0.8 V < VI < VO, IO = 0 to 100 mA | 1.45 | 1.5 | 1.55 | V | ||
| TPS61012, 0.8 V < VI < VO, IO = 0 to 100 mA | 1.74 | 1.8 | 1.86 | ||||
| TPS61013, 0.8 V < VI < VO, IO = 0 to 100 mA | 2.42 | 2.5 | 2.58 | V | |||
| TPS61013, 1.6 V < VI < VO, IO = 0 to 200 mA | 2.42 | 2.5 | 2.58 | V | |||
| TPS61014, 0.8 V < VI < VO, IO = 0 to 100 mA | 2.72 | 2.8 | 2.88 | V | |||
| TPS61014, 1.6 V < VI < VO, IO = 0 to 200 mA | 2.72 | 2.8 | 2.88 | V | |||
| TPS61015, 0.8 V < VI < VO, IO = 0 to 100 mA | 2.9 | 3.0 | 3.1 | V | |||
| TPS61015, 1.6 V < VI < VO, IO = 0 to 200 mA | 2.9 | 3.0 | 3.1 | V | |||
| TPS61016, 0.8 V < VI < VO, IO = 0 to 100 mA | 3.2 | 3.3 | 3.4 | V | |||
| TPS61016, 1.6 V < VI < VO, IO = 0 to 200 mA | 3.2 | 3.3 | 3.4 | V | |||
| IO | Maximum continuous output current | VI > 0.8 V | 100 | mA | |||
| VI > 1.8 V | 250 | ||||||
| I(SW) | Switch current limit | TPS61011, once started | 0.39 | 0.48 | A | ||
| TPS61012, once started | 0.54 | 0.56 | |||||
| TPS61013, once started | 0.85 | 0.93 | |||||
| TPS61014, once started | 0.95 | 1.01 | |||||
| TPS61015, once started | 1 | 1.06 | |||||
| TPS61016, once started | 1.07 | 1.13 | |||||
| V(FB) | Feedback voltage | 480 | 500 | 520 | mV | ||
| f | Oscillator frequency | 420 | 500 | 780 | kHz | ||
| D | Maximum duty cycle | 85% | |||||
| rDS(on) | NMOS switch on-resistance | VO = 1.5 V | 0.37 | 0.51 | Ω | ||
| PMOS switch on-resistance | 0.45 | 0.54 | |||||
| rDS(on) | NMOS switch on-resistance | VO = 3.3 V | 0.2 | 0.37 | Ω | ||
| PMOS switch on-resistance | 0.3 | 0.45 | |||||
| Line regulation (1) | VI = 1.2 V to 1.4 V, IO = 100 mA | 0.3 | %/V | ||||
| Load regulation (1) | VI = 1.2 V; IO = 50 mA to 100 mA | 0.1 | |||||
| Autodischarge switch resistance |
300 | 400 | Ω | ||||
| Residual output voltage after autodischarge | ADEN = VBAT; EN = GND | 0.4 | V | ||||
| VIL | LBI voltage threshold (2) | V(LBI) voltage decreasing | 480 | 500 | 520 | mV | |
| LBI input hysteresis | 10 | mv | |||||
| LBI input current | 0.01 | 0.03 | |||||
| VOL | LBO output low voltage | V(LBI) = 0 V, VO = 3.3 V, I(OL) = 10 µA | 0.04 | 0.2 | V | ||
| LBO output leakage current | V(LBI) = 650 mV, V(LBO) = VO | 0.03 | µA | ||||
| I(FB) | FB input bias current (TPS61010 only) | V(FB) = 500 mV | 0.01 | 0.03 | |||
| VIL | EN and ADEN input low voltage | 0.8 V < VBAT < 3.3 V | 0.2 × VBAT | V | |||
| VIH | EN and ADEN input high voltage | 0.8 V < VBAT < 3.3 V | 0.8 ×VBAT | V | |||
| EN and ADEN input current | EN and ADEN = GND or VBAT | 0.01 | 0.03 | µA | |||
| Iq | Quiescent current into pins VBAT/SW and VOUT | IL = 0 mA, VEN = VI | VBAT/SW | 31 | 46 | µA | |
| VO | 5 | 8 | |||||
| Ioff | Shutdown current from power source | VEN = 0 V, ADEN = VBAT, TA= 25°C | 1 | 3 | µA | ||
| FIGURE | ||
|---|---|---|
| Maximum output current | vs Input voltage for VO = 2.5 V, 3.3 V | Figure 1 |
| vs Input voltage for VO = 1.5 V, 1.8 V | Figure 2 | |
| Efficiency | vs Output current for VI = 1.2 VVO = 1.5 V, L1 = Sumida CDR74 - 10 µH | Figure 3 |
| vs Output current for VI = 1.2 VVO = 2.5 V, L1 = Sumida CDR74 - 10 µH | Figure 4 | |
| vs Output current for VIN = 1.2 VVO = 3.3 V, L1 = Sumida CDR74 - 10 µH | Figure 5 | |
| vs Output current for VI = 2.4 VVO = 3.3 V, L1 = Sumida CDR74 - 10 µH | Figure 6 | |
| vs Input voltage for IO = 10 mA, IO = 100 mA, IO = 200 mAVO = 3.3 V, L1 = Sumida CDR74 - 10 µH | Figure 7 | |
| TPS61016, VBAT = 1.2 V, IO = 100 mA | Figure 8 | |
| Sumida CDRH6D38 - 10 µH | ||
| Sumida CDRH5D18 - 10 µH | ||
| Sumida CDRH74 - 10 µH | ||
| Sumida CDRH74B - 10 µH | ||
| Coilcraft DS 1608C - 10 µH | ||
| Coilcraft DO 1608C - 10 µH | ||
| Coilcraft DO 3308P - 10 µH | ||
| Coilcraft DS 3316 - 10 µH | ||
| Coiltronics UP1B - 10 µH | ||
| Coiltronics UP2B - 10 µH | ||
| Murata LQS66C - 10 µH | ||
| Murata LQN6C - 10 µH | ||
| TDK SLF 7045 - 10 µH | ||
| TDK SLF 7032 - 10 µH | ||
| Output voltage | vs Output current TPS61011 | Figure 9 |
| vs Output current TPS61013 | Figure 10 | |
| vs Output current TPS61016 | Figure 11 | |
| Minimum supply start-up voltage | vs Load resistance | Figure 12 |
| No-load supply current | vs Input voltage | Figure 13 |
| Shutdown supply current | vs Input voltage | Figure 14 |
| Switch current limit | vs Output voltage | Figure 15 |

Figure 3. Efficiency vs Output Current
Figure 5. Efficiency vs Output Current
Figure 7. Efficiency vs Input Voltage
Figure 9. Output Voltage vs Output Current
Figure 11. Output Voltage vs Output Current
Figure 13. No-Load Supply Current vs Input Voltage
Figure 15. Switch Current Limit vs Output Voltage

Figure 4. Efficiency vs Output Current
Figure 6. Efficiency vs Output Current
Figure 8. Efficiency vs Inductor Type
Figure 10. Output Voltage vs Output Current
Figure 12. Minimum Start-Up Supply Voltage vs Load Resistance
Figure 14. Shutdown Supply Current vs Input Voltage