ZHCSCJ2 June 2014 LM3633
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| VIN to GND | −0.3 | 6 | V | |
| VSW, VOVP, VHVLED1, VHVLED2, VHVLED3 to GND | −0.3 | 45 | ||
| VSCL, VSDA, VPWM to GND | −0.3 | 6 | ||
| VHWEN, VCPOUT to GND, VC–, VC+ | −0.3 | 6 | ||
| VLVLED1- VLVLED6, to GND | −0.3 | 6 | ||
| Continuous power dissipation | Internally Limited | |||
| Junction temperature (TJ-MAX) | 150 | °C | ||
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| Tstg | Storage temperature range | −65 | 150 | °C | |
| V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) | −1000 | 1000 | V |
| Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) | −250 | 250 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| VIN to GND | 2.7 | 5.5 | V | ||
| VSW, VOVP, VHVLED1, VVHLED2, VVHLED3 to GND, VPWM, VHWEN, VSDA, VSCL | 0 | 40 | |||
| VLVLED1- VLVLED6 to GND | 0 | 6 | |||
| Junction temperature (TJ) (1)(2) | −40 | 125 | °C | ||
| THERMAL METRIC(1) | DSBGA | UNIT | |
|---|---|---|---|
| (20 PINS) | |||
| RθJA | Thermal resistance junction-to-ambient | 55.3 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| SUPPLY VOLTAGE (IN PIN) | |||||||
| ISHDN | Shutdown current | 2.7 V ≤ VIN ≤ 5.5 V, HWEN = GND | 1 | 5.5 | µA | ||
| THERMAL SHUTDOWN | |||||||
| TSD | Thermal shutdown | 140 | °C | ||||
| Hysteresis | 15 | ||||||
| BOOST CONVERTER AND HVLED | |||||||
| IHVLED(1/2/3) | Output current regulation (HVLED1, HVLED2 or HVLED3) | Full-scale current = 20.2 mA, PWM off, brightness code = max, exponential mapping, auto headroom off, HVLED1 Bank A, HVLED2/3 Bank B | 2.7 V ≤ VIN ≤ 5.5 V | 18.38 (–9%) |
20.2 | 22.02 (9%) |
mA |
| Full-scale current = 20.2 mA, PWM off, brightness code = max, exponential mapping, auto headroom off, HVLED1 Bank A, HVLED2/3 Bank B | TA = 25°C | –3.4% | ±2.0% | 3.2% | |||
| TA = 25°C, 3.0 V ≤ VIN ≤ 4.5 V |
–3.6% | 3.4% | |||||
| TA = 25°C | ±2.0% | ||||||
| IMATCH_HV | HVLED1 to HVLED2 or HVLED3 matching (3) | PWM off, exponential mapping, auto headroom off HVLED1,2,3 = Bank A, |
2.7 V ≤ VIN ≤ 5.5 V, ILED = 20.2 mA |
–2.5% | 2.5% | ||
| TA = 25°C, ILED = 20.2 mA |
–2.0% | 1.7% | |||||
| 2.7 V ≤ VIN ≤ 5.5 V ILED = 500 µA |
–8.5% | 8.5% | |||||
| ILED_MIN | Minimum LED current | Full-scale current = 20.2 mA, Exponential Mapping | 6.0 | µA | |||
| VREG_CS | Regulated current sink headroom voltage | Auto headroom off, TA = 25°C | 400 | mV | |||
| VHR_HV | Minimum current sink headroom voltage for HVLED current sinks | ILED = 95% of nominal, full-scale current = 20.2 mA, auto headroom off | 2.7 V ≤ VIN ≤ 5.5 V | 285 | |||
| TA = 25°C | 190 | ||||||
| RDSON | NMOS switch on resistance | ISW = 500 mA, TA = 25°C | 0.3 | Ω | |||
| ICL_BOOST | NMOS switch current limit | 880 | 1120 | mA | |||
| TA = 25°C | 1000 | ||||||
| VOVP | Output overvoltage protection | ON threshold OVP select bits = 11 |
2.7 V ≤ VIN ≤ 5.5 V | 38.75 | 41.1 | V | |
| TA = 25°C | 40 | ||||||
| Hysteresis | TA = 25°C | 1 | |||||
| fSW | Switching frequency | Boost frequency select bit = 0 | 2.7 V ≤ VIN ≤ 5.5 V | 450 | 550 | kHz | |
| TA = 25°C | 500 | ||||||
| Boost frequency select bit = 1 | 2.7 V ≤ VIN ≤ 5.5 V | 900 | 1100 | ||||
| TA = 25°C | 1000 | ||||||
| DMAX | Maximum duty cycle | 2.7 V ≤ VIN ≤ 5.5 V | 94% | ||||
| CHARGE PUMP AND LVLED | |||||||
| ILVLED(1/2/3/4/5/6) | Output current regulation (low-voltage current sinks) | Full-scale current = 20.2 mA, brightness code = 0xFF | 2.7 V ≤ VIN ≤ 5.5 V | 18.38 | 20.2 | 22.02 | mA |
| IMATCH_LV | LVLED current sink matching (4) | Full-scale current = 20.2 mA | 2.7 V ≤ VIN ≤ 5.5 V | −3.1% | 2% | ||
| VHR_LV | Minimum current sink headroom voltage for LVLED current sinks | ILED = 95% of nominal, full-scale current = 20.2 mA | 125 | mV | |||
| TA = 25°C | 80 | ||||||
| VGTH | Threshold for gain transition | 2.7 V ≤ VIN ≤ 5.5 V | 65 | 190 | |||
| TA = 25°C | 125 | ||||||
| VCPOUT | Charge Pump Output Voltage | 2X Gain | TA = 25°C | 4.42 | V | ||
| ICL_PUMP | Charge pump current limit | 1X Gain, output referred | 3 V ≤ VIN ≤ 5.5 V | 180 | 350 | mA | |
| 2X Gain | TA = 25°C | 240 | |||||
| ROUT | Charge pump output resistance | 1X Gain | TA = 25°C | 1.1 | Ω | ||
| HWEN INPUT | |||||||
| VHWEN_L | Logic low | 2.7 V ≤ VIN ≤ 5.5 V | 0 | 0.4 | V | ||
| VHWEN_H | Logic High | 2.7 V ≤ VIN ≤ 5.5 V | 1.2 | VIN | |||
| PWM INPUT | |||||||
| VPWM_L | Input logic low | 2.7 V ≤ VIN ≤ 5.5 V | 0 | 400 | mV | ||
| VPWM_H | Input logic high | 2.7 V ≤ VIN ≤ 5.5 V | 1.36 | VIN | |||
| tPWM | Minimum PWM input pulse | 2.7 V ≤ VIN ≤ 5.5 V, PWM Zero Detect Enabled | 0.75 | µs | |||
| I2C-COMPATIBLE VOLTAGE SPECIFICATIONS (SCL, SDA) | |||||||
| VIL | Input logic low | 2.7 V ≤ VIN ≤ 5.5 V | 0 | 400 | mV | ||
| VIH | Input logic high | 2.7 V ≤ VIN ≤ 5.5 V | 1.35 | VIN | V | ||
| VOL | Output logic low (SDA) | 2.7 V ≤ VIN ≤ 5.5 V, ILOAD = 3 mA | 400 | mV | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| I2C-COMPATIBLE TIMING SPECIFICATIONS (SCL, SDA)(3), Figure 1 | ||||||
| t1 | SCL (Clock Period) | 2.7 V ≤ VIN ≤ 5.5 V | 2.5 | µs | ||
| t2 | Data In setup time to SCL high | 2.7 V ≤ VIN ≤ 5.5 V | 100 | ns | ||
| t3 | Data out stable after SCL low | 2.7 V ≤ VIN ≤ 5.5 V | 0 | |||
| t4 | SDA low setup time to SCL low (Start) | 2.7 V ≤ VIN ≤ 5.5 V | 100 | |||
| t5 | SDA high hold time after SCL high (Stop) | 2.7 V ≤ VIN ≤ 5.5 V | 100 | |||
| INTERNAL POR THRESHOLD AND HWEN TIMING SPECIFICATION | ||||||
| VPOR | POR reset release voltage threshold | VIN ramp time = 100 μs | 1.7 | 2.1 | V | |
| VIN ramp time = 100 μs, TA = 25°C | 1.9 | |||||
| tHWEN | First I2C start pulse after HWEN high | POR reset complete, 2.7 V ≤ VIN ≤ 5.5 V | 20 | µs | ||
| POR reset complete, TA = 25°C | 5 | |||||
Figure 1. I2C-Compatible Interface Timing
Figure 2. NMOS RDSON vs Temperature
Figure 4. Boost OCP vs Temperature
Figure 6. Charge Pump ROUT vs Temperature
Figure 8. Charge Pump 2X Mode VCPOUT vs Temperature
Figure 10. PWM VIH vs Temperature
Figure 3. Shutdown IQ vs Temperature
Figure 5. VHR_HV vs Temperature
Figure 7. Low Voltage LED VGTH vs Temperature
Figure 9. VHR_LV vs Temperature
Figure 11. PWM VIL vs Temperature