SNLS044D May 2000 – July 2016 DS90LV047A
PRODUCTION DATA.
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| Supply voltage (VCC) | −0.3 | 4 | V | ||
| Input voltage (DIN) | −0.3 | VCC + 0.3 | V | ||
| Enable input voltage (EN, EN*) | −0.3 | VCC + 0.3 | V | ||
| Output voltage (DOUT+, DOUT–) | −0.3 | 3.9 | V | ||
| Short-circuit duration | (DOUT+, DOUT–) | Continuous | |||
| Maximum package power dissipation at +25°C | D0016A package | 1088 | mW | ||
| PW0016A package | 866 | ||||
| Derate D0016A package | above +25°C | 8.5 | mW/°C | ||
| Derate PW0016A package | above +25°C | 6.9 | |||
| Lead temperature | Soldering (4 s) | 260 | °C | ||
| Maximum junction temperature | 150 | °C | |||
| Storage temperature, Tstg | −65 | 150 | °C | ||
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge(1) | Human-body model (HBM) | ±10000 | V |
| Machine Model | ±1200 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| Supply voltage, VCC | 3 | 3.3 | 3.6 | V | |
| Operating free air temperature, TA | −40 | 25 | 85 | °C | |
| THERMAL METRIC(1) | DS90LV047A | UNIT | |
|---|---|---|---|
| PW (TSSOP) | |||
| 16 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 114 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 51 | °C/W |
| RθJB | Junction-to-board thermal resistance | 59 | °C/W |
| ψJT | Junction-to-top characterization parameter | 8 | °C/W |
| ψJB | Junction-to-board characterization parameter | 58 | °C/W |
| PARAMETER | TEST CONDITIONS | PIN | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VOD1 | Differential output voltage | RL = 100 Ω (Figure 17) | DOUT−
DOUT+ |
250 | 310 | 450 | mV |
| ΔVOD1 | Change in magnitude of VOD1 for complementary output states | 1 | 35 | |mV| | |||
| VOS | Offset voltage | 1.125 | 1.17 | 1.375 | V | ||
| ΔVOS | Change in magnitude of VOS for complementary output states | 1 | 25 | |mV| | |||
| VOH | Output high voltage | 1.33 | 1.6 | V | |||
| VOL | Output low voltage | 0.9 | 1.02 | V | |||
| VIH | Input high voltage | DIN, EN, EN* | 2 | VCC | V | ||
| VIL | Input low voltage | GND | 0.8 | V | |||
| IIH | Input high current | VIN = VCC or 2.5 V | −10 | 2 | +10 | µA | |
| IIL | Input low current | VIN = GND or 0.4 V | −10 | −2 | +10 | µA | |
| VCL | Input clamp voltage | ICL = −18 mA | −1.5 | −0.8 | V | ||
| IOS | Output short-circuit current(4) | ENABLED, DIN = VCC, DOUT+ = 0 V or DIN = GND, DOUT− = 0 V |
DOUT−
DOUT+ |
−4.2 | −9 | mA | |
| IOSD | Differential output short-circuit current(4) | ENABLED, VOD = 0 V | −4.2 | −9 | mA | ||
| IOFF | Power-off leakage | VOUT = 0 V or 3.6 V, VCC = 0 V or Open | −20 | ±1 | 20 | µA | |
| IOZ | Output TRI-STATE current | EN = 0.8 V and EN* = 2.0 V VOUT = 0 V or VCC |
−10 | ±1 | 10 | µA | |
| ICC | No load supply current drivers enabled | DIN = VCC or GND | VCC | 4 | 8 | mA | |
| ICCL | Loaded supply current drivers enabled | RL = 100 Ω all channels, DIN = VCC or GND (all inputs) | 20 | 30 | mA | ||
| ICCZ | No load supply current drivers disabled | DIN = VCC or GND, EN = GND, EN* = VCC |
2.2 | 6 | mA | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tPHLD | Differential propagation delay high to low | RL = 100 Ω, CL = 15 pF (Figure 18 and Figure 19) |
0.5 | 0.9 | 1.7 | ns |
| tPLHD | Differential propagation delay low to high | 0.5 | 1.2 | 1.7 | ns | |
| tSKD1 | Differential pulse skew |tPHLD − tPLHD|(4) | 0 | 0.3 | 0.4 | ns | |
| tSKD2 | Channel-to-channel skew(5) | 0 | 0.4 | 0.5 | ns | |
| tSKD3 | Differential part-to-part skew(6) | 0 | 1 | ns | ||
| tSKD4 | Differential part-to-part skew(7) | 0 | 1.2 | ns | ||
| tTLH | Rise time | 0.5 | 1.5 | ns | ||
| tTHL | Fall time | 0.5 | 1.5 | ns | ||
| tPHZ | Disable time high to Z | RL = 100 Ω, CL = 15 pF (Figure 20 and Figure 21) |
2 | 5 | ns | |
| tPLZ | Disable time low to Z | 2 | 5 | ns | ||
| tPZH | Enable time Z to high | 3 | 7 | ns | ||
| tPZL | Enable time Z to low | 3 | 7 | ns | ||
| fMAX | Maximum operating frequency(8) | 200 | 250 | MHz | ||
Figure 1. Output High Voltage vs Power Supply Voltage
Figure 3. Output Short Circuit Current vs
Figure 5. Differential Output Voltage vs
Figure 7. Offset Voltage vs Power Supply Voltage
Figure 9. Power Supply Current vs Ambient Temperature
Figure 11. Differential Propagation Delay vs
Figure 13. Differential Skew vs Ambient Temperature
Figure 15. Transition Time vs Ambient Temperature
Figure 2. Output Low Voltage vs Power Supply Voltage
Figure 4. Output TRI-STATE Current vs
Figure 6. Differential Output Voltage vs Load Resistor
Figure 8. Power Supply Current vs Power Supply Voltage
Figure 10. Differential Propagation Delay vs
Figure 12. Differential Skew vs Power Supply Voltage
Figure 14. Transition Time vs Power Supply Voltage
Figure 16. Data Rate vs Cable Length