OBSSCircuit DescriptionV1.1010/02/94 20:07 CET.Component & analysis parameters of a circuit.TINA 9.3.100.244 SF-TIB(c) Copyright 1993,94,95,96 DesignSoft Inc. All rights reserved.; $Circuit$?@kj?1?ƚ0zl C0 EMF@ XRpArial!.@0X!]@8!^@(!@T!@Frequency (#Hz)0100000000000000000;u;udv%  % RpArial#(1000000000000000128p! !eu`uF)tu$l!Jݍ]@?!m?!dv%  % %  % %  % %  % %  % %  % %  % %  % %  % FF&%  '%   6Faa6aqq6q}}6}666666666666666666&&6&2262;;6;BB6BHH6HMM6MRR6RVV6VVV6Vqq6q66666666666666666% FF&%  6F  6 % FF%  6 FF6 FSFS6 S% FF%  6 FF6 % FF&%  6 % % %  &%  %     T4`CxA@A4LhFrequency (Hz) a4% % %  %     TT?!E0xA@A?!LP1F!% ( FF%  6Faa6aqq6q}}6}66666% % &%  %     TX!0xA@A!LP10!% ( %  666666666% % &%  %     T`!0xA@A!LT100 !% ( %  66&&6&2262;;6;BB6BHH6HMM6MRR6R% % &%  %     TXO!]0xA@AO!LP1k^!% ( VV%  6Vqq6q6666666% % &%  %     T`!0xA@A!LT10k!% ( %  666666666% % &%  %     Td! 0xA@A!LT100k!!% (   %  6 % FF6F% % %  &%  %     % RpArialu`u$!z(u!{$!J)u!{[u`u!{!{˪ , ɝ!{`u!u`u!{!{#P!uuz8!xu `!!'C!{R `!BR_'C!#/@!2]@7aqiqBbdv%  TuxA@A L`Gain (dB)  :% ( %  % % %  %     Tp :xA@A LX-30.00; % ( ==%  6FDD6FDD6FDD6FDD6FBB6FDD6FDD6FDD6FDD6F% % &%  %     Tp:xA@ALX-20.00;% ( ==%  6FDD6FDD6FDD6FDD6FBB6FDD6FDD6FDD6FDD6F% % &%  %     Tp:xA@ALX-10.00;% ( ==%  6FDD6FDD6FDD6FDzDz6FzBsBs6FsDmDm6FmDfDf6FfD`D`6F`DYDY6FY% % &%  %     Td"K:ZxA@A"KLT0.00;K% ( =S=S%  6FSDLDL6FLDFDF6FFD?D?6F?D9D96F9B2B26F2D,D,6F,D%D%6F%DD6FDD6F% % &%  %     Tl :xA@A LX10.00; % ( ==%  6F% % FSFS&%  6KSKS6OSOS6TSTS6XSXS6]S]S6aSaS6fSfS6jSjS6oSoS6sSsS6xSxS6|S|S6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6SS6 S S6 S S6SS6SS6SS6SS6$S$S6(S(S6-S-S62S2S66S6S6;S;S6?S?S6DSDS6HSHS6MSMS6QSQS6VSVS6ZRZR6_R_R6cRcR6hRhR6lRlR6qRqR6vRvR6zQzQ6QQ6QQ6PP6PP6OO6NN6NN6NN6OO6RR6WW6]]6gg6rr6~~666666666666  6  6  666 RpMS Sans Serif!! P!r!!  ) r d!!(W! Hd!(W(W H3 w!`Dw!h  3u dv%  % % % VER=1.0Font0=Verdana,14Font1=Verdana,14,BRect0=2,0,0,85,22Rect1=1,0,0,85,10Rect2=1,0,10,10,17Rect3=1,10,10,75,17Rect4=1,75,10,85,17Rect5=1,0,17,50,22Rect6=1,50,17,85,22Text0=0,2,2,TitleText1=0,2,11,SizeText2=0,2,18,DateText3=0,12,11,Document No.Text4=0,77,11,RevText5=0,52,18,SheetText6=0,70,18,ofField0=1,T,11,2,80Field1=1,T,11,5,80Field2=1,S,4,13,5Field3=1,T,14,13,40Field4=1,R,78,13,6Field5=1,D,12,18,30Field6=1,P,64,18,3Field7=1,A,77,18,3F0=Texas Instruments F1=TLV8542F5=08/07/2017F6=1F7=1p0@p0 Arial=Please see inside the model netlist for parameters that are being modeled. Symbol????333333???x8HHx8xHHHT_0C05AAA020170102113357;HXHHHXHHT_0D5F0DB020170102113357?HH8HHH8T_0D5F117020170102113357;HHHHT_0D5F207020170102113357Cpp88T_0C056EA020170102113424?8(88(T_0C05726020170102113424;8P8`8P8`T_0C05762020170102113424;T_07B5EE1020170102114038;T_07B5EA5020170102114038;  T_08D26A2020170102114128?xxxxxT_08CA73B020170102115344;T_0BFEC0A020170102152554;T_101F78E020170807145344;T_101AF50020170807145524CT_101AF8C020170807145524;xxT_101AFC8020170807145524;T_101A02A020170807145529 BR4T_0B36C24020170102113357R_AX600_W200 (R)j@@?Y@ Bx C1T_0B36BC6020170102113357CP_CYL300_D700_L1400 (C) dy=@eAY@?DBHX V2T_0B36B68020170102113357Battery_9V_V (V)ffffff? BpR1T_0B36DFA020170102113424R_AX600_W200 (R)MbP?@?Y@DB V4T_07AEDDB020170102114038 JP100 (V)ffffff @DB V5T_07AED7D020170102114038 JP100 (V)BrxVoutT_091424E020170102115338 NOPCB (VF):BU1T_0D93666020170807152557 TLV8542LMP8672SC:\Users\x0247018\AppData\Local\Temp\DesignSoft\{Tina9-TI-11162016-155939}\TLV8544SCK#LMP8672Label+!00d*VINP  @d*VINMrK @d*VCCBitBtnHelpBt  @d*VEEndbkHelpMa  @d*VOUTTopWidt ( @h( *00g+Arial?g+Arial?~Y4@~Y4@- * TLV8542N*****************************************************************************J* (C) Copyright 2017 Texas Instruments Incorporated. All rights reserved.N*****************************************************************************H** This model is designed as an aid for customers of Texas Instruments.K** TI and its licensors and suppliers make no warranties, either expressedH** or implied, with respect to this model, including the warranties of F** merchantability or fitness for a particular purpose. The model isK** provided solely on an "as is" basis. The entire risk as to its quality)** and performance is with the customer.N******************************************************************************A** Released by: WEBENCH(R) Design Center, Texas Instruments Inc.* Part: TLV8542* Date: 08/07/2017* Model Type: All In One* Simulator: TINA * Simulator Version: 9* EVM Order Number: N/A * EVM Users Guide: N/A "* Datasheet: SNOSD29B JUNE 2017** Model Version: 2.0*N****************************************************************************** * Updates:** Version 1.0 : Release to WebG* Version 2.0 : Updating values of various parameters based on recent "* datasheet updates*N***************************************************************************** * Notes:,* 1. The following parameters are modeled: M* Input Offset Voltage, Input Bias Current, Input Offset Current, Input O* Impedance (Common Mode and Diffreential), Input referred voltage noise, N* Input referred current noise, VIH/VIL, VOH/VOL vs Output Current, CMRR, P* PSRR, Output Short Circuit Current, Open loop output impedance, Slew Rate,.* Iq_On, Frequency Response (Open Loop). *N*****************************************************************************'.subckt TLV8542 VEE VCC VINM VINP VOUT&XI0 VEE VCC VINM VINP VOUT PD VFA_HT5VPD VCC PD 0 .endsG.subckt ESDDIODES VCC VEE VIN VOUT PARAMS: VESDL=-700e-3 VESDH=-700e-3XIDVIH NET12 NET16 DiodeIdealXIDVIL NET16 NET20 DiodeIdealR0 VIN NET16 1e-3V0 NET16 VOUT 0VESDL NET20 VEE {VESDL} VESDH VCC NET12 {VESDH} .ends ESDDIODES_.subckt VINRANGE3 SIGNAL1 SIGNAL2 VCC VEE VINM VINP PARAMS: SignalGain=1 VIL=100e-3 VIH=100e-3XIDVIL NET13 NET074 DiodeIdealXIDVIH NET076 NET13 DiodeIdeal&FVIL2 SIGNAL2 VEE VIL {SignalGain} &FVIL1 SIGNAL1 VEE VIL {SignalGain} &FVIH1 VCC SIGNAL1 VIH {SignalGain} &FVIH2 VCC SIGNAL2 VIH {SignalGain} E1 NET8 0 VINM 0 1E0 NET6 0 VINP 0 1VIL NET074 VEE {VIL} VIH VCC NET076 {VIH} R7 NET8 NET13 1R6 NET6 NET13 1.ends VINRANGE3N.subckt ZIN IN1 IN2 OUT1 OUT2 PARAMS: R5=100e-3 R4=100e-3 C3=50e-15 C2=50e-15#+ C1=50e-15 R2=10e9 R1=10e9 R3=1e9R5 IN2 OUT2 {R5} R4 IN1 OUT1 {R4} C3 OUT1 OUT2 {C3} C2 OUT2 0 {C2} C1 OUT1 0 {C1} GR2 OUT2 0 OUT2 0 {1/R2} GR1 0 OUT1 0 OUT1 {1/R1} !GR3 OUT1 OUT2 OUT1 OUT2 {1/R3} .ends ZIND.subckt DOMPOLE A B C PARAMS: R2=1e-3 R1=2.653e6 C2=1e-15 C1=10e-12R2 NET7 A {R2} R1 B A {R1} C2 NET7 C {C2} C1 A B {C1} .ends DOMPOLEU.subckt PHASEDELAY A B VIN VOUT PARAMS: R1=1 R2=1e9 C1=1e-15 C2=1e-15 Gain=1 L=1e-12R5 VOUT NET026 1e-3R3 NET15 NET024 1e-3R1 NET27 NET15 {R1} R4 NET15 A 1e9R2 VOUT B {R2} C1 NET024 A {C1} C2 NET026 B {C2} E0 NET27 0 VIN 0 {Gain} L0 NET15 VOUT {L} .ends PHASEDELAYM.subckt NONDOMPOLE C VIN VOUT PARAMS: L=1e-12 Gain=1 C=226.7e-12 Rp=1e9 Rs=1L0 NET020 VOUT {L} E0 NET4 0 VIN 0 {Gain} C1 NET019 C {C} R3 VOUT C {Rp} R2 VOUT NET019 1e-3R1 NET020 NET4 {Rs} .ends NONDOMPOLE.subckt ANALOG_BUFFER VOUT VINR0 VIN 0 1e9R1 VOUT 0 1e9E0 VOUT 0 VIN 0 1.ends ANALOG_BUFFER6.subckt OUTPUTCIR PD VCC VCCMAIN VEE VEEMAIN VIN VOUTDXI25 NET75 NET092 OutputCir_IscDiodeIdeal PARAMS: IS=10e-15 N=50e-3CXI23 NET79 NET76 OutputCir_IscDiodeIdeal PARAMS: IS=10e-15 N=50e-3 ***********P*XIVOL VOL VEE VIMONINV OutputCir_VOHVOL PARAMS: VSUPPLYREF=-2.5 VOUTvsIOUT_X1=P*+ {ABS(0)} VOUTvsIOUT_Y1=-2.3 VOUTvsIOUT_X2= {ABS(-100e-3)} VOUTvsIOUT_Y2=-2*+ U*XIVOH VCC VOH VIMON OutputCir_VOHVOL PARAMS: VSUPPLYREF=2.5 VOUTvsIOUT_X1= {ABS(0)}C*+ VOUTvsIOUT_Y1=2.3 VOUTvsIOUT_X2= {ABS(100e-3)} VOUTvsIOUT_Y2=2R**XIVOL VOL VEE VIMONINV OutputCir_VOHVOL PARAMS: VSUPPLYREF=-1.65 VOUTvsIOUT_X1=T**+ {ABS(0)} VOUTvsIOUT_Y1=-1.63 VOUTvsIOUT_X2= {ABS(-15e-3)} VOUTvsIOUT_Y2=-1.63**+ W**XIVOH VCC VOH VIMON OutputCir_VOHVOL PARAMS: VSUPPLYREF=1.65 VOUTvsIOUT_X1= {ABS(0)}H**+ VOUTvsIOUT_Y1=1.63 VOUTvsIOUT_X2= {ABS(7.5e-3)} VOUTvsIOUT_Y2=1.63PXIVOL VOL VEE VIMONINV OutputCir_VOHVOL PARAMS: VSUPPLYREF=-1.65 VOUTvsIOUT_X1=O+ {ABS(0)} VOUTvsIOUT_Y1=-1.65 VOUTvsIOUT_X2= {ABS(-8m)} VOUTvsIOUT_Y2=-1.45+ UXIVOH VCC VOH VIMON OutputCir_VOHVOL PARAMS: VSUPPLYREF=1.65 VOUTvsIOUT_X1= {ABS(0)}B+ VOUTvsIOUT_Y1=1.65 VOUTvsIOUT_X2= {ABS(6m)} VOUTvsIOUT_Y2=1.35 ************ **********[**XISOURCEVLIMIT NET064 NET76 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=1 IscVsVsupply_X1=3T**+ IscVsVsupply_Y1= {ABS(75e-3)} IscVsVsupply_X2=5 IscVsVsupply_Y2= {ABS(100e-3)}**+ Z**XISINKVLIMIT NET047 NET092 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=1 IscVsVsupply_X1=3V**+ IscVsVsupply_Y1= {ABS(-75e-3)} IscVsVsupply_X2=5 IscVsVsupply_Y2= {ABS(-100e-3)}+ [XISOURCEVLIMIT NET064 NET76 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=1 IscVsVsupply_X1=1.8S+ IscVsVsupply_Y1= {ABS(15e-3)} IscVsVsupply_X2=3.3 IscVsVsupply_Y2= {ABS(15e-3)}+ ZXISINKVLIMIT NET047 NET092 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=1 IscVsVsupply_X1=1.8U+ IscVsVsupply_Y1= {ABS(-30e-3)} IscVsVsupply_X2=3.3 IscVsVsupply_Y2= {ABS(-30e-3)} **********XI14 NET070 NET15 DiodeIdealXI15 NET068 VOL DiodeIdeal-XI0 VCCMAIN VEEMAIN VIMON PD OutputCir_ILOADc**XI1 NET53 NET22 VIMON OutputCir_Rout PARAMS: Ro_Iout_0A=100 RIsc=1 Isc=100e-3 Islope_const=10e-3f**XI1 NET53 NET22 VIMON OutputCir_Rout PARAMS: Ro_Iout_0A=12.4k RIsc=1 Isc=22.5e-3 Islope_const=10e-3j*IT1*XI1 NET53 NET22 VIMON OutputCir_Rout PARAMS: Ro_Iout_0A=12.15k RIsc=1 Isc=22.5e-3 Islope_const=10e-3fXI1 NET53 NET22 VIMON OutputCir_Rout PARAMS: Ro_Iout_0A=12.15k RIsc=1 Isc=22.5e-3 Islope_const=0.1e-3KXI6 NET22 NET0100 0 NET043 VCC VEE RECOVERYSIGNAL OutputCir_RecoveryAssist6XAHDLI43 NET055 NET054 RECOVERYSIGNAL VCC VEE HPA_OR23XAHDLI41 VOUT NET067 NET055 VCC VEE HPA_COMP_IDEAL3XAHDLI42 NET059 VOUT NET054 VCC VEE HPA_COMP_IDEAL'HVIMONINV VIMONINV 0 VCURSINKDETECT 1#HVIMON VIMON 0 VCURSOURCEDETECT 1RP NET092 NET0146 1e-3RVIMONINV VIMONINV 0 1e9RVIMON VIMON 0 1e9RISC NET092 NET15 1*ROUTMINOR NET0100 NET17 10ROUTMINOR NET0100 NET17 1000XI11 NET76 NET15 ANALOG_BUFFERXI2 NET22 VIN ANALOG_BUFFERVPROBE3 NET070 VOH 0VPROBE2 NET043 NET0100 0VTRIGGERVOL NET059 VOL 10e-3VTRIGGERVOH VOH NET067 10e-3V3 NET79 NET047 0V4 NET75 NET064 0VPROBE4 NET068 NET15 0VCURSOURCEDETECT NET15 NET34 0VCURSINKDETECT VOUT NET34 0VPROBE1 NET53 NET17 0*LOUT NET17 NET092 500e-12**LOUT NET17 NET092 1200e-3LOUT NET17 NET17092 1200e-3LOUT2 NET17092 NET092 1n**CP NET0146 0 1e-15*CP2 NET092 NET0920 2e-15*RP2 NET0920 0 10kCP2 NET092 NET0920 1.5e-11**RP2 NET0920 0 100kRP2 NET0920 0 120k*COUT NET22 NET0100 1e-15**COUT NET22 NET0100 0.95e-6COUT NET22 NET0100 1.3e-6CBYP NET17 NET0017 50e-10RBYP NET0017 NET17092 190k.ends OUTPUTCIRF.subckt RECOVERYCIRCUIT A B VCC VEE PARAMS: VRecL=-10e-3 VRecH=-10e-3XI2 NET8 NET014 DiodeIdealXI3 NET014 NET9 DiodeIdealVBRIDGE NET014 A 0 VPROBE A B 0VRECL NET9 VEE {VRecL} VRECH VCC NET8 {VRecH} .ends RECOVERYCIRCUIT*.subckt VFA_HT5 VEE VCC VINM VINP VOUT PDR_PD PD 0 1e9RXI67 VCC_INT VEE_INT NET21 VINP_INT ESDDIODES PARAMS: VESDL=-700e-3 VESDH=-700e-3RXI68 VCC_INT VEE_INT NET22 VINM_INT ESDDIODES PARAMS: VESDL=-700e-3 VESDH=-700e-3d**XI66 HIGHZ NET56 VCC_INT VEE_INT NET22 NET21 VINRANGE3 PARAMS: SignalGain=1 VIL=100e-3 VIH=100e-3Z**XI66 HIGHZ NET56 VCC_INT VEE_INT NET22 NET21 VINRANGE3 PARAMS: SignalGain=1 VIL=0 VIH=0`XI66 HIGHZ NET56 VCC_INT VEE_INT NET22 NET21 VINRANGE3 PARAMS: SignalGain=1 VIL=-0.02 VIH=-0.04*************R**XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=-10e-6 Ioffset=150e-9 TA=25C**+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=-9.925e-6 Ibiasm=-10.075e-6T**XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=400e-15 Ioffset=400e-15 TA=27>**+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=600e-15 Ibiasm=200e-15T**XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=100e-15 Ioffset=100e-15 TA=27=**+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=150e-15 Ibiasm=50e-15Y**XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=72.37e-15 Ioffset=1149.7e-15 TA=27=**+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=150e-15 Ibiasm=50e-15]*IT1*XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=72.414e-15 Ioffset=1149.7e-15 TA=27@*IT1*+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=150e-15 Ibiasm=50e-15^*IT2*XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=72.345e-15 Ioffset=1150.97e-15 TA=27@*IT2*+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=150e-15 Ibiasm=50e-15[**XI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=72.545e-15 Ioffset=1141.85e-15 TA=27=**+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=150e-15 Ibiasm=50e-15LXI60 VINP_INT VINM_INT Ibias PARAMS: Choice=2 Ibias=100f Ioffset=100f TA=275+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=150f Ibiasm=50f\**XI21 NET12 NET22 NET12 CMRR PARAMS: CMRR_DC=-100 CMRR_f3dB=50e3 CMRR_f3dB_FudgeFactor=3.4N**XI19 VCC_INT VEE_INT NET2 NET12 PSRR PARAMS: PSRRP_DC=-100 PSRRP_f3dB=100e3!**+ PSRRN_DC=-90 PSRRN_f3dB=90e3YXI21 NET12 NET22 NET12 CMRR PARAMS: CMRR_DC=-84 CMRR_f3dB=50e3 CMRR_f3dB_FudgeFactor=1E6JXI19 VCC_INT VEE_INT NET2 NET12 PSRR PARAMS: PSRRP_DC=-90 PSRRP_f3dB=4000+ PSRRN_DC=-90 PSRRN_f3dB=4000\**XI21 NET12 NET22 NET12 CMRR PARAMS: CMRR_DC=-75 CMRR_f3dB=50e3 CMRR_f3dB_FudgeFactor=1.05I**XI19 VCC_INT VEE_INT NET2 NET12 PSRR PARAMS: PSRRP_DC=-90 PSRRP_f3dB=5**+ PSRRN_DC=-90 PSRRN_f3dB=5***********************O**XI53 VINP VINM NET1 NET2 ZIN PARAMS: R5=100e-3 R4=100e-3 C3=50e-15 C2=50e-15%**+ C1=50e-15 R2=10e9 R1=10e9 R3=1e9KXI53 VINP VINM NET1 NET2 ZIN PARAMS: R5=100e-3 R4=100e-3 C3=2e-12 C2=4e-12"+ C1=4e-12 R2=10e9 R1=10e9 R3=1e9***********************K**XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=2.653e6 C2=1e-15 C1=10e-12R*IT1*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.510E+03 C2=1e-15 C1=5.00E-06T*IT2_1*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.510E+03 C2=1e-15 C1=5.50E-06N**XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.510E+03 C2=1e-15 C1=5.8E-06N**XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.510E+03 C2=1e-15 C1=5.4E-06R*IT2*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.510E+03 C2=1e-15 C1=5.46E-06O*IT3*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.510E+03 C2=1e-15 C1=6E-06R*IT4*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=1.302E+04 C2=1e-15 C1=2.50E-06Q*IT5*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=1.302E+04 C2=1e-15 C1=3.0E-06I*XI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.5E+06 C2=1e-15 C1=2.91uHXI58 HIGHZ NET32 0 DOMPOLE PARAMS: R2=1e-3 R1=6.5E+06 C2=1e-15 C1=3.18u7**XI18 NET11 0 Inoise PARAMS: X=1e-3 Y=100e-15 Z=1e-156**XI63 NET2 0 Inoise PARAMS: X=1e-3 Y=100e-15 Z=1e-15:XI18 NET11 0 Inoise PARAMS: X=0.001 Y=200e-15 Z=46.47e-159XI63 NET2 0 Inoise PARAMS: X=0.001 Y=200e-15 Z=46.47e-15***********************T**XI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2S**+ Gm=37.7e-3 SBF=1 ITAILMAX_X1=3 ITAILMAX_Y1=1e-3 ITAILMAX_X2=5 ITAILMAX_Y2=1e-3B**+ ITAILMIN_X1=3 ITAILMIN_Y1=1e-3 ITAILMIN_X2=5 ITAILMIN_Y2=1e-3W*IT1*XI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2^*IT1*+ Gm=3.065E-01 SBF=1 ITAILMAX_X1=1.8 ITAILMAX_Y1=10e-3 ITAILMAX_X2=3.3 ITAILMAX_Y2=10e-3K*IT1*+ ITAILMIN_X1=1.8 ITAILMIN_Y1=10e-3 ITAILMIN_X2=3.3 ITAILMIN_Y2=10e-3W*IT2*XI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2]*IT2*+ Gm=3.59E-01 SBF=1 ITAILMAX_X1=1.8 ITAILMAX_Y1=12e-3 ITAILMAX_X2=3.3 ITAILMAX_Y2=12e-3K*IT2*+ ITAILMIN_X1=1.8 ITAILMIN_Y1=12e-3 ITAILMIN_X2=3.3 ITAILMIN_Y2=12e-3T**XI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2[**+ Gm=3.489E-01 SBF=1 ITAILMAX_X1=1.8 ITAILMAX_Y1=12e-3 ITAILMAX_X2=3.3 ITAILMAX_Y2=12e-3H**+ ITAILMIN_X1=1.8 ITAILMIN_Y1=12e-3 ITAILMIN_X2=3.3 ITAILMIN_Y2=12e-3W*IT3*XI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2b*IT3*+ Gm=1.532E-01 SBF=1 ITAILMAX_X1=1.8 ITAILMAX_Y1=11.1e-3 ITAILMAX_X2=3.3 ITAILMAX_Y2=11.1e-3O*IT3*+ ITAILMIN_X1=1.8 ITAILMIN_Y1=11.5e-3 ITAILMIN_X2=3.3 ITAILMIN_Y2=11.5e-3W*IT4*XI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2b*IT4*+ Gm=1.532E-01 SBF=1 ITAILMAX_X1=1.8 ITAILMAX_Y1=11.1e-3 ITAILMAX_X2=3.3 ITAILMAX_Y2=11.1e-3O*IT4*+ ITAILMIN_X1=1.8 ITAILMIN_Y1=11.5e-3 ITAILMIN_X2=3.3 ITAILMIN_Y2=11.5e-3RXI52 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=1\+ Gm=1.60E-01 SBF=1 ITAILMAX_X1=1.8 ITAILMAX_Y1=11.1e-3 ITAILMAX_X2=3.3 ITAILMAX_Y2=11.1e-3J+ ITAILMIN_X1=1.8 ITAILMIN_Y1=14.2e-3 ITAILMIN_X2=3.3 ITAILMIN_Y2=14.2e-3***********************UXI85 0 0 NET61 NET71 PHASEDELAY PARAMS: R1=1 R2=1e9 C1=1e-15 C2=1e-15 Gain=1 L=1e-12O**XI26 0 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=226.7e-12 Rp=1e9 Rs=1R*IT1*XI26 0 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=8.394E-06 Rp=1e9 Rs=1K**XI26 0 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=1E-11 Rp=1e9 Rs=1N*IT3*XI26 0 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=1E-12 Rp=1e9 Rs=1J*XI26 0 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=1E-12 Rp=1e9 Rs=1FXI26 0 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=4u Rp=1e9 Rs=18**XI17 NET1 NET11 Vnoise PARAMS: X=1e-3 Y=100e-9 Z=5e-9>**IT2**XI17 NET1 NET11 Vnoise PARAMS: X=0.5 Y=450e-9 Z=264e-9=XI17 NET1 NET11 Vnoise PARAMS: X=0.5 Y=651.49e-9 Z=265.43e-9B**XI59 NET21 NET11 Vinoffset PARAMS: TA=25 VOS=500e-6 DRIFT=10e-6F*IT1*XI59 NET21 NET11 Vinoffset PARAMS: TA=27 VOS=0.5e-3 DRIFT=1.5e-6H*IT2*XI59 NET21 NET11 Vinoffset PARAMS: TA=27 VOS=0.526e-3 DRIFT=1.5e-6H*IT3*XI59 NET21 NET11 Vinoffset PARAMS: TA=27 VOS=0.526e-3 DRIFT=0.8e-6>XI59 NET21 NET11 Vinoffset PARAMS: TA=27 VOS=-0.3m DRIFT=0.8u8XI30 POWER VCC_INT VCC VEE_INT VEE NET71 VOUT OUTPUTCIRSXI28 NET41 NET51 VCC_INT VEE_INT RECOVERYCIRCUIT PARAMS: VRecL=-10e-3 VRecH=-10e-3****************O**XI40 VCC VEE POWER VEE_INT VCC_INT Iq PARAMS: IOFF=1e-9 ION_X1=0 ION_Y1=1e-3H**+ ION_X2=1.6 ION_Y2=1e-3 ION_X3=1.9 ION_Y3=1e-3 ION_X4=12 ION_Y4=1e-3OXI40 VCC VEE POWER VEE_INT VCC_INT Iq PARAMS: IOFF=1e-9 ION_X1=0 ION_Y1=500e-9L+ ION_X2=1.6 ION_Y2=500e-9 ION_X3=1.9 ION_Y3=500e-9 ION_X4=12 ION_Y4=500e-9VPROBE2 HIGHZ NET41VDOMPOLEBIAS NET32 0 0VPROBE1 NET31 HIGHZR0 NET56 0 1e3R14 VCC_INT PD 10e61XAHDLINV3 PD PDINV VCC_INT VEE_INT HPA_INV_IDEAL4XAHDLINV1 PDINV POWER VCC_INT VEE_INT HPA_INV_IDEALXI13 VEE_INT VEE ANALOG_BUFFERXI12 VCC_INT VCC ANALOG_BUFFER.ends VFA_HT5.SUBCKT HPA_OR2 1 2 3 VDD VSScE1 4 0 VALUE = { IF( ((V(1)< (V(VDD)+V(VSS))/2 ) & (V(2)< (V(VDD)+V(VSS))/2 )), V(VSS), V(VDD) ) } R1 4 3 1 C1 3 0 1e-12.ENDS".SUBCKT HPA_INV_IDEAL 1 2 VDD VSSAE1 2 0 VALUE = { IF( V(1)> (V(VDD)+V(VSS))/2, V(VSS), V(VDD) ) }.ENDS+.SUBCKT HPA_COMP_IDEAL INP INN OUT VDD VSS=E1 OUT 0 VALUE = { IF( (V(INP) > V(INN)), V(VDD), V(VSS) ) }.ENDS.SUBCKT AVG VIN1 VIN2 VOUT0E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 }.ENDS.SUBCKT CMRR A B C PARAMS:+ CMRR_DC = -100+ CMRR_f3dB = 50e3+ CMRR_f3dB_FudgeFactor = 3.4 .PARAM CMRR = {0-CMRR_DC}5.PARAM FCMRR = {CMRR_f3dB * CMRR_f3dB_FudgeFactor}:X1 A B C 0 CMRR_NEW PARAMS: CMRR = {CMRR} FCMRR = {FCMRR}.ENDS.SUBCKT DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT DomPoleBias VIN1 VIN2 VOUT5E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 * 1/2} R1 VOUT 0 1G.ENDS:.SUBCKT GmItail Vinp Vinm Ioutp Ioutm VEE VCC PD PARAMS:+ Choice = 2+ Gm = 3.77e-2 + SBF = 1 + ITAILMAX_X1 = { 3.0 }+ ITAILMAX_Y1 = { 10m }+ ITAILMAX_X2 = { 5.0 }+ ITAILMAX_Y2 = { 10m }+ ITAILMIN_X1 = { 3.0 }+ ITAILMIN_Y1 = { 10m }+ ITAILMIN_X2 = { 5.0 }+ ITAILMIN_Y2 = { 10m }1.PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }1.PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }0.PARAM Choice3 = { IF ( Choice == 3, 1, 0 ) }1.PARAM Choice11 = { IF ( Choice == 11, 1, 0 ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1.PARAM ITAILMAX_SLOPE = D+ { ( ITAILMAX_Y2 - ITAILMAX_Y1 ) / ( ITAILMAX_X2 - ITAILMAX_X1 ) }.PARAM ITAILMAX_INTCP = 1+ { ITAILMAX_Y1 - ITAILMAX_SLOPE * ITAILMAX_X1 }EITAILMAX ITAILMAX 0 VALUE = 4+ { ITAILMAX_SLOPE * V(VCC,VEE) + ITAILMAX_INTCP }.PARAM ITAILMIN_SLOPE = D+ { ( ITAILMIN_Y2 - ITAILMIN_Y1 ) / ( ITAILMIN_X2 - ITAILMIN_X1 ) }.PARAM ITAILMIN_INTCP = 1+ { ITAILMIN_Y1 - ITAILMIN_SLOPE * ITAILMIN_X1 }EITAILMIN ITAILMIN 0 VALUE = 4+ { ITAILMIN_SLOPE * V(VCC,VEE) + ITAILMIN_INTCP },G1 IOUTP IOUTM VALUE = { ( 1-V(PDINV) ) * (K+ Choice1 * ( LIMIT ( Gm * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) +V+ Choice2 * ( Gm * (V(ITAILMAX)/Gm) * TANH( V(VINP,VINM) / (V(ITAILMAX)/Gm) ) ) + d+ Choice3 * ( Gm * V(VINP,VINM) / ( 1 + Gm/V(ITAILMAX) * ABS( V(VINP,VINM) ) ) ) + e+ Choice11 * ( LIMIT ( ( Gm * EXP ( LIMIT ( SBF * ABS(V(VINP,VINM)) , -LOG(1E100), LOG(1E100) ) ) ) G+ * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) ++ 0 ) }.ENDS .SUBCKT Ibias VINP VINM PARAMS:+ Choice = 1+ Ibias = -10u+ Ioffset = 150n+ TA = 25+ IbiasDrift = 0+ IoffsetDrift = 0+ Ibiasp = -9.925u+ Ibiasm = -10.075u..PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }..PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }C.PARAM Ib = { Choice1 * Ibias + Choice2 * (Ibiasp + Ibiasm)/2 }D.PARAM Io = { Choice1 * Ioffset + Choice2 * ABS(Ibiasp - Ibiasm) } FEIb Ib 0 VALUE = { IbiasDrift * TEMP + ( Ib - IbiasDrift * TA ) }FEIo Io 0 VALUE = { IoffsetDrift * TEMP + ( Io - IoffsetDrift * TA ) }(GIbp VINP 0 VALUE = { V(Ib) + V(Io)/2 }(GIbm VINM 0 VALUE = { V(Ib) - V(Io)/2 }.ENDS.SUBCKT Inoise A B PARAMS:+ X = { 1m }+ Y = { 100f } + Z = { 1f }BX1 A B FEMT PARAMS: NLFF = { Y/1f } FLWF = { X } NVRF = { Z/1f }.ENDS..subckt Iq VCCmain VEEmain PD VEE VCC PARAMS:+ IOFF = { 1n }+ ION_X1 = { 0.0 }+ ION_Y1 = { 1m }+ ION_X2 = { 1.6 }+ ION_Y2 = { 1m }+ ION_X3 = { 1.9 }+ ION_Y3 = { 1m }+ ION_X4 = { 12.0 }+ ION_Y4 = { 1m }OEION_SEG1 ION_SEG1 0 VALUE = { IF ( V(VCC,VEE) <= ION_X2, 1, 0 ) }YEION_SEG2 ION_SEG2 0 VALUE = { IF ( V(VCC,VEE) > ION_X2 & V(VCC,VEE) <= ION_X3, 1, 0 ) }REION_SEG3 ION_SEG3 0 VALUE = { IF ( V(VCC,VEE) > ION_X3 , 1, 0 ) }F.PARAM ION_SEG1_SLOPE = { ( ION_Y2 - ION_Y1 ) / ( ION_X2 - ION_X1 ) }=.PARAM ION_SEG1_INTCP = { ION_Y1 - ION_SEG1_SLOPE * ION_X1 }F.PARAM ION_SEG2_SLOPE = { ( ION_Y3 - ION_Y2 ) / ( ION_X3 - ION_X2 ) }=.PARAM ION_SEG2_INTCP = { ION_Y2 - ION_SEG2_SLOPE * ION_X2 }F.PARAM ION_SEG3_SLOPE = { ( ION_Y4 - ION_Y3 ) / ( ION_X4 - ION_X3 ) }=.PARAM ION_SEG3_INTCP = { ION_Y3 - ION_SEG3_SLOPE * ION_X3 }WEION ION 0 VALUE = { V(ION_SEG1) * ( ION_SEG1_SLOPE * V(VCC,VEE) + ION_SEG1_INTCP ) +E+ V(ION_SEG2) * ( ION_SEG2_SLOPE * V(VCC,VEE) + ION_SEG2_INTCP ) +G+ V(ION_SEG3) * ( ION_SEG3_SLOPE * V(VCC,VEE) + ION_SEG3_INTCP ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1KG1 VCCMAIN VEEMAIN VALUE = { V(ION) * ( 1-V(PDINV) ) + IOFF * V(PDINV) } .ends*.SUBCKT OutputCir_ILOAD VDD VSS VIMON PD$X1 PD PDINV VDD VSS LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1AG1 VDD 0 VALUE = {IF(V(VIMON) >= 0, V(VIMON)*( 1-V(PDINV) ), 0)}AG2 VSS 0 VALUE = {IF(V(VIMON) < 0, V(VIMON)*( 1-V(PDINV) ), 0)}.ENDS1.SUBCKT OutputCir_IscDiodeIdeal NEG POS PARAMS: + IS = 1E-14 + N = 50m:G1 POS NEG_INT VALUE = { IF ( V(POS,NEG_INT) <= 0 , IS, S+ IS * ( EXP ( V(POS,NEG_INT)/25m * 1/N ) - 0 ) ) } V1 NEG_INT NEG {-N*0.8}.ENDS0.SUBCKT OutputCir_IscVlimit A B VCC VEE PARAMS:+RIsc = { 1 }+IscVsVsupply_X1 = { 3.0 }+IscVsVsupply_Y1 = { 75m }+IscVsVsupply_X2 = { 5.0 }+IscVsVsupply_Y2 = { 100m }.PARAM IscVsVsupply_SLOPE = T+ { ( IscVsVsupply_Y2 - IscVsVsupply_Y1 ) / ( IscVsVsupply_X2 - IscVsVsupply_X1 ) }.PARAM IscVsVsupply_INTCP = =+ { IscVsVsupply_Y1 - IscVsVsupply_SLOPE * IscVsVsupply_X1 }&EIscVsVsupply IscVsVsupply 0 VALUE = <+ { IscVsVsupply_SLOPE * V(VCC,VEE) + IscVsVsupply_INTCP }*E1 A B VALUE = { V(IscVsVsupply) * RIsc }.ENDSO.SUBCKT OutputCir_RecoveryAssist VINP VINM IOUTP IOUTM VCC VEE RecoverySignal*X1 RecoverySignal RS VCC VEE LOGIC1 0 DLSVLOGIC1 LOGIC1 0 1NG1 IOUTP IOUTM VALUE = { LIMIT ( 1m * V(VINP,VINM) * V(RS) , -100m, 100m ) }.ENDS).SUBCKT OutputCir_Rout B A VIMON PARAMS:+ Ro_Iout_0A = 100 + RIsc = 1 + Isc = 100m+ Islope_const = 1/100'.PARAM Islope = { Islope_const * Isc }`G1 A B VALUE = { V(A,B) * 1 / ( (Ro_Iout_0A - RIsc) * Islope / ( Islope + ABS(V(VIMON)) ) ) }.ENDS+.SUBCKT OutputCir_VOHVOLDiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS(.SUBCKT OutputCir_VOHVOL A B C PARAMS:+ VSUPPLYREF = {2.5} + VOUTvsIOUT_X1 = { ABS(0) }+ VOUTvsIOUT_Y1 = { 2.4 } + VOUTvsIOUT_X2 = { ABS(100m) }+ VOUTvsIOUT_Y2 = { 2.1 }*.PARAM VDROPvsIOUT_X1 = { VOUTvsIOUT_X1 }:.PARAM VDROPvsIOUT_Y1 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y1) }*.PARAM VDROPvsIOUT_X2 = { VOUTvsIOUT_X2 }:.PARAM VDROPvsIOUT_Y2 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y2) }.PARAM VDROPvsIOUT_SLOPE = P+ { ( VDROPvsIOUT_Y2 - VDROPvsIOUT_Y1 ) / ( VDROPvsIOUT_X2 - VDROPvsIOUT_X1 ) }.PARAM VDROPvsIOUT_INTCP = :+ { VDROPvsIOUT_Y1 - VDROPvsIOUT_SLOPE * VDROPvsIOUT_X1 }$EVDROPvsIOUT VDROPvsIOUT 0 VALUE = 4+ { VDROPvsIOUT_SLOPE * V(C) + VDROPvsIOUT_INTCP }"E1 A B VALUE = { V(VDROPvsIOUT) }.ENDS!.SUBCKT PSRR VDD VSS A B PARAMS:+ PSRRP_DC = -100+ PSRRP_f3dB = 100k+ PSRRN_DC = -90+ PSRRN_f3dB = 90k".PARAM PSRRP = {0-PSRRP_DC}".PARAM PSRRN = {0-PSRRN_DC}".PARAM FPSRRP = {PSRRP_f3dB}".PARAM FPSRRN = {PSRRN_f3dB}'X1 VDD VSS A B 0 PSRR_DUAL_NEW PARAMS:$+ PSRRP = {PSRRP} FPSRRP = {FPSRRP}$+ PSRRN = {PSRRN} FPSRRN = {FPSRRN}.ENDS+.SUBCKT RecoveryCircuit_DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT Vinoffset POS NEG PARAMS: + TA = 25+ VOS = 500u+ DRIFT = 10u ?E1 POS NEG VALUE = { DRIFT * TEMP + ( VOS - DRIFT * TA ) }.ENDS$.SUBCKT Vinrange_DiodeIdeal NEG POSCG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*100k ) }R0 POS NEG 1000G.ENDS.SUBCKT Vnoise A B PARAMS:+ X = { 1m }+ Y = { 100n }+ Z = { 5n }?X1 A B VNSE PARAMS: NLF = { Y/1n } FLW = { X } NVR = { Z/1n }.ENDS6.SUBCKT VNSE 1 2 PARAMS: NLF = 10 FLW = 4 NVR = 4.6$.PARAM GLF={PWR(FLW,0.25)*NLF/1164}.PARAM RNV={1.184*PWR(NVR,2)}/.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVNE1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS=.SUBCKT FEMT 1 2 PARAMS: NLFF = 0.1 FLWF = 0.001 NVRF = 0.1'.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164} .PARAM RNVF={1.184*PWR(NVRF,2)}1.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVNF D2 8 0 DVNFE1 3 6 7 8 {GLFF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10R4 5 0 {RNVF}R5 5 0 {RNVF} R6 3 4 1E9 R7 4 0 1E9G1 1 2 3 4 1E-6 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDSL.SUBCKT PSRR_SINGLE VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}E1 VO VI 1 GNDF 1C2 VDD VSS 10P.ENDSP.SUBCKT PSRR_SINGLE_NEW VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VO VI 1a GNDF 1C2 VDD VSS 10P.ENDS,.SUBCKT PSRR_DUAL VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}*E1 VO VI VALUE = {V(1,GNDF) + V(3,GNDF)}C3 VDD VSS 10P.ENDS0.SUBCKT PSRR_DUAL_NEW VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}EC 301 GNDF 3 GNDF 1(GRC 301 302 VALUE = { V(301,302)/1e6 }CC 302 GNDF 1e3ED 3 3a VALUE = {V(302,GNDF)},E1 VO VI VALUE = {V(1a,GNDF) + V(3a,GNDF)}C3 VDD VSS 10P.ENDSC.SUBCKT CMRR_OLD VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}E1 VI VO 1 GNDF 1.ENDSB.SUBCKT CMRR_NEW VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}EA 101 GNDF 1 GNDF 1&GRA 101 102 VALUE = {V(101,102)/1e6}CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VI VO 1a GNDF 1.ENDS0.SUBCKT DLS 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) < (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS3.SUBCKT DLSINV 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) > (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS#.SUBCKT SWITCH_IDEAL A B C PARAMS:+ Ron = 100m+ Roff = 0.1GYG1 A B VALUE = { V(A,B) * 1 / ( Roff/2 * TANH( 0 - ( 20*V(C) - 5 ) ) + Roff/2 + Ron ) } R1 A 0 1000G R2 B 0 1000G.ENDS&.MODEL VINRANGE_DIDEAL D N=1m'.MODEL RECOVERYCIRCUIT_DIDEAL D N=1m (.MODEL OUTPUTCIR_ISC_DIDEAL D N=0.1m'.MODEL OUTPUTCIR_VOHVOL_DIDEAL D N=1m .MODEL DBASIC DVEEVCCVINMVINPVOUTB8(VG1T_1022E7D020170807152936 JP100 (VG)ffffff?Y@,C6?BnVCCT_07AED1F020170102114038 NOPCB (J)BnVEET_07AECC1020170102114038 NOPCB (J)BnVEET_07AEE39020170102114056 NOPCB (J)Bn VCCT_07AEE97020170102114100 NOPCB (J)BfHT_0B36B0A020170102113357 NOPCB (GND)Bf8`T_0B36D3E020170102113424 NOPCB (GND)BfT_07AEC63020170102114038 NOPCB (GND)BfT_07AEC05020170102114038 NOPCB (GND)8?+ ]@!MbP??ư>*dd@Y@VG1[dddd??.Aj@.AeAMbP?@@??ư> $ 4@D@ =B?& .>??ư>ư>ư>ư>ư>ư>?I@?I@?I@& .>#i;@& .>-q=ư>MbP?-q=MbP?vIh%<=@@D@& .>?MbP?4@?{Gz?ꌠ9Y>)F@?+= _BKH9$@Y@& .>ư>?.AMbP??????I@Default analysis parameters. These parameters establish convergence and sufficient accuracy for most circuits. In case of convergence or accuracy problems click on the "hand " button to Open other parameter sets.?Xd I@nMbP?{Gz?{Gz?MbP????|=Hz>}Ô%ITNoname