SCAS878C May 2009 – January 2016 CDCLVP2108
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| VCC | Supply voltage(2) | –0.5 | 4.6 | V |
| VIN | Input voltage(3) | –0.5 | VCC + 0.5 | V |
| VOUT | Output voltage(3) | –0.5 | VCC + 0.5 | V |
| IIN | Input current | 20 | mA | |
| IOUT | Output current | 50 | mA | |
| TA | Specified free-air temperature (no airflow) | –40 | 85 | °C |
| TJ | Maximum junction temperature | 125 | °C | |
| Tstg | Storage temperature | –65 | 150 | °C |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | 2000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | 1000 | |||
| MIN | NOM | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| VCC | Supply voltage | 2.375 | 2.50/3.30 | 3.60 | V | |
| TA | Ambient temperature | –40 | 85 | °C | ||
| TPCB | PCB temperature (measured at thermal pad) | 105 | °C | |||
| THERMAL METRIC(1) | CDCLVP2108 | UNIT | ||
|---|---|---|---|---|
| RGZ (VQFN) | ||||
| 48 PINS | ||||
| RθJA | Junction-to-ambient thermal resistance | 0 LFM | 30.8 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 18.2 | °C/W | |
| RθJB | Junction-to-board thermal resistance | 8.3 | °C/W | |
| ψJT | Junction-to-top characterization parameter | 0.5 | °C/W | |
| ψJB | Junction-to-board characterization parameter | 8.3 | °C/W | |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 3.8 | °C/W | |
| θJP (4) | Thermal resistance, junction-to-pad | 3.67 | °C/W | |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| fIN | Input frequency | Clock input | 2000 | MHz | ||
| VIN, DIFF, PP | Differential input peak-peak voltage | fIN ≤ 1.5 GHz | 0.1 | 1.5 | V | |
| 1.5 GHz ≤ fIN ≤ 2 GHz | 0.2 | 1.5 | V | |||
| VICM | Input common-mode level | 1 | VCC – 0.3 | V | ||
| IIH | Input high current | VCC = 3.6 V, VIH = 3.6 V | 40 | μA | ||
| IIL | Input low current | VCC = 3.6 V, VIL = 0 V | –40 | μA | ||
| ΔV/ΔT | Input edge rate | 20% to 80% | 1.5 | V/ns | ||
| ICAP | Input capacitance | 5 | pF | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VOH | Output high voltage | TA ≤ 85°C | VCC – 1.26 | VCC – 0.9 | V | |
| TPCB ≤105°C | VCC – 1.26 | VCC – 0.83 | ||||
| VOL | Output low voltage | TA ≤ 85°C | VCC – 1.7 | VCC – 1.3 | V | |
| TPCB ≤105°C | VCC – 1.7 | VCC – 1.25 | ||||
| VOUT, DIFF, PP | Differential output peak-peak voltage | fIN ≤ 2 GHz | 0.5 | 1.35 | V | |
| VAC_REF | Input bias voltage(2) | IAC_REF = 2 mA | VCC – 1.6 | VCC – 1.1 | V | |
| IEE | Supply internal current | Outputs unterminated, TA ≤ 85°C |
115 | mA | ||
| Outputs unterminated, TPCB≤ 105ºC |
117 | |||||
| ICC | Output and internal supply current | All outputs terminated, 50 Ω to VCC – 2 TA ≤ 85°C |
620 | mA | ||
| All outputs terminated, 50 Ω to VCC – 2 TPCB≤ 105ºC |
677 | |||||
| MIN | NOM | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| tPD | Propagation delay | VIN, DIFF, PP = 0.1 V | 550 | ps | ||
| VIN, DIFF, PP = 0.3 V | 550 | |||||
| tSK,PP | Part-to-part skew | 150 | ps | |||
| tSK,O_WB | Within bank output skew | 25 | ps | |||
| tSK,O_BB | Bank-to-bank output skew | Both inputs have equal skew | 30 | ps | ||
| tSK,P | Pulse skew (with 50% duty cycle input) | Crossing-point-to-crossing-point distortion, fOUT = 100 MHz | –50 | 50 | ps | |
| tRJIT | Random additive jitter (with 50% duty cycle input) | fOUT = 100 MHz,(2) VIN,SE = VCC, Vth = 1.65 V, 10 kHz to 20 MHz |
0.121 | ps, RMS | ||
| fOUT = 100 MHz,(2) VIN,SE = 0.9 V, Vth = 1.1 V, 10 kHz to 20 MHz |
0.185 | ps, RMS | ||||
| fOUT = 2 GHz, VIN,DIFF,PP = 0.2 V, VICM = 1 V, 10 kHz to 20 MHz |
0.077 | ps, RMS | ||||
| fOUT = 100 MHz,(2) VIN,DIFF,PP = 0.15 V, VICM = 1 V, 10 kHz to 20 MHz |
0.122 | ps, RMS | ||||
| fOUT = 100 MHz,(2) VIN,DIFF,PP = 1 V, VICM = 1 V, 10 kHz to 20 MHz |
0.105 | ps, RMS | ||||
| fOUT,8 = 500 MHz, VIN,DIFF,PP,0 = 0.15 V, VICM, 0 = 1 V, fOUT, 7 = 62.5 MHz, VIN,SE,1 = VCC, Vth, 1 = VCC/2 |
–48.5 | dBc | ||||
| fOUT = 100 MHz(3), Input AC-coupled, VICM = VAC_REF, 12 kHz to 20 MHz |
0.068 | ps, RMS | ||||
| fOUT = 122.88 MHz(4), Input AC-coupled, VICM = VAC_REF, 12 kHz to 20 MHz |
0.056 | ps, RMS | ||||
| fOUT = 156.25 MHz(5), Input AC-coupled, VICM = VAC_REF, 12 kHz to 20 MHz |
0.047 | ps, RMS | ||||
| fOUT = 312.5 MHz(6), Input AC-coupled, VICM = VAC_REF, 12 kHz to 20 MHz |
0.026 | ps, RMS | ||||
| PSPUR | Coupling on differential OUT8 from OUT7 in the frequency spectrum of fOUT, 8 ±(fOUT, 8/2) with synchronous inputs |
fOUT,8 = 500 MHz, VIN,DIFF,PP,0 = 0.15 V, VICM, 0 = 1 V, fOUT, 7 = 62.5 MHz, VIN,SIFF,PP,1 = 1 V, VICM, 1 = 1 V |
–50.6 | dBc | ||
| fOUT,8 = 500 MHz, VIN,DIFF,PP,0 = 0.15 V, VICM, 0 = 1 V, fOUT, 7 = 15.625 MHz, VIN,SE,1 = VCC, Vth, 1 = VCC/2 |
–60.5 | dBc | ||||
| fOUT,8 = 500 MHz, VIN,DIFF,PP,0 = 0.15 V, VICM, 0 = 1 V, fOUT, 7 = 15.625 MHz, VIN,DIFF,PP,1 = 1 V, VICM, 1 = 1 V |
–60.9 | dBc | ||||
| tR/tF | Output rise/fall time | 20% to 80% | 200 | ps | ||
Figure 1 shows the output voltage and rise/fall time. Output and part-to-part skew are shown in Figure 2.
Figure 1. Output Voltage and Rise/Fall Time
Figure 3. Differential Output Peak-to-Peak Voltage vs Frequency
Figure 4. Differential Output Peak-to-Peak Voltage vs Frequency