OBSSi Spice MacroV1.00 98/01/15#TINA Device Editor 9.3.50.40 SF-TI Copyright 1997 DesignSoft, Inc. ÛHMUX509MUX509TC:\Users\a0393976\AppData\Local\Temp\DesignSoft\{Tina9-TI-03272014-173235}\MUX36D04SCK#MUX509Label¸ÿ¸ÿHHÀÿ¸ÿ@HPPÄÿ©ÿd*DA@$@ ¸ÿèÿ @d*DB ¸ÿøÿ @d*A0V(VDD,VSS)+961 ¸ÿÈÿ @d*A1V(24,GND)+961. ¸ÿØÿ @d*S1A ¸ÿ( @d*S2A ¸ÿ8 @d*ENèDž  ¸ÿ @d*GND ¸ÿ @d*S1B Hèÿ @d*S2B*V(E,GND)*V(3 Høÿ @d*S3AÜÉD˜z¦  HÈÿ @d*S4A HØÿ @d*VDD(VDD,VSS)+961 H( @d*VSS(27,GND)+961. H8 @d*S3BS) GND VCC D H @d*S4BS) GND VCC D H @fÀÿ¸ÿ@H€ÿÿg!MUX509Arialèÿøÿ333333ó?€&ÞRq¶ä@&ÞRq¶ä@Â * MUX36XXX N*****************************************************************************O* (C) Copyright 2016 Texas Instruments Incorporated. All rights reserved. N*****************************************************************************N** This model is designed as an aid for customers of Texas Instruments. N** TI and its licensors and suppliers make no warranties, either expressed N** or implied, with respect to this model, including the warranties of M** merchantability or fitness for a particular purpose. The model is M** provided solely on an "as is" basis. The entire risk as to its quality L** and performance is with the customer O***************************************************************************** A* Released by: Analog eLab Design Center, Texas Instruments Inc.^* Part: MUX36XXX 36-V, Low-Capacitance, Low Charge Injection, Precision Analog Multiplexers * Date: 2016-01-19* Model Type: TINA, PSpice* Simulator: TINA-TI, PSpice9* Simulator Version: TINA 9.3.50.40 SF-TI, PSpice 16.3.0&* Datasheet: SBOS705 –FEBRUARY 2014*N****************************************************************************** version 1.3:O***************************************************************************** *$ *PRODUCT $*MUX36D04 4:1 differential channels$*MUX36S08 8:1 single-ended channelsL.SUBCKT MUX36D04 A0 A1 DA DB EN GND S1A S2A S3A S4A S1B S2B S3B S4B VDD VSSVS1 25 VSS 1.1VS2 27 GND 1.1XD4 VSS DA D_DD04N_0XD3 DA VDD D_DD04P_0XD10 VSS EN D_DSN_0XD9 EN VDD D_DSP_0XD8 VSS A1 D_DSN_0XD7 A1 VDD D_DSP_0XD6 VSS A0 D_DSN_0XD5 A0 VDD D_DSP_0.XU8 E_19 VSS GND DB VDD S4B MUX36SW_0.XU7 E_20 VSS GND DB VDD S3B MUX36SW_0.XU6 E_21 VSS GND DB VDD S2B MUX36SW_0.XU5 E_22 VSS GND DB VDD S1B MUX36SW_0.XU4 E_19 VSS GND DA VDD S4A MUX36SW_0.XU3 E_20 VSS GND DA VDD S3A MUX36SW_0.XU2 E_21 VSS GND DA VDD S2A MUX36SW_0XD2 VSS DB D_DD04N_0XD1 DB VDD D_DD04P_0-XU10 GND VCC DGND DIGIFPWR_NOOPNODE_0!+ PARAMS: VOLTAGE=5 REFERENCE=0V@XU9 A0 A1 EN E_22 E_21 E_20 E_19 VCC GND 2TO4DEC_T_EN_07GIb2 GND 23 VALUE = {(7.69M*V(VDD,VSS)+961.5M)}Rb2 23 GND 1 TC=-150URpsrr3 25 VSS 1MEGXD19 25 26 D_LIM1_0Rpsrr2 26 VSS 1GXD22 VDD 26 D_LIM1_0"GIb2_2 26 VSS 23 GND 22.22UXD21 VDD 24 D_LIM1_0R6 27 GND 1MEGXD20 27 24 D_LIM1_06GIb1 GND 28 VALUE = {(7.69M*V(24,GND)+961.5M)}Rb3 28 GND 1 TC=-350U"GIb1_2 24 GND 28 GND 20.85URpsrr1 24 GND 1GCS78 S3B S4B 110FCS67 S2B S3B 110FCS56 S1B S2B 110FCS45 S4A S1B 110FCS34 S3A S4A 110FCS23 S2A S3A 110FCS12 S1A S2A 110F.XU1 E_22 VSS GND DA VDD S1A MUX36SW_0.ENDSC.SUBCKT MUX36S08 A0 A1 A2 D EN GND S1 S2 S3 S4 S5 S6 S7 S8 VDD VSSVS1 28 VSS 1.1VS2 30 GND 1.1XD10 VSS A2 D_DSN_0XD9 A2 VDD D_DSP_0XD8 VSS A1 D_DSN_0XD7 A1 VDD D_DSP_0XD6 VSS A0 D_DSN_0XD5 A0 VDD D_DSP_0,XU8 E_19 VSS GND D VDD S8 MUX36SW_0,XU7 E_20 VSS GND D VDD S7 MUX36SW_0,XU6 E_21 VSS GND D VDD S6 MUX36SW_0,XU5 E_22 VSS GND D VDD S5 MUX36SW_0,XU4 E_23 VSS GND D VDD S4 MUX36SW_0,XU3 E_24 VSS GND D VDD S3 MUX36SW_0,XU2 E_25 VSS GND D VDD S2 MUX36SW_0XD4 VSS D D_DDN_0XD3 D VDD D_DDP_07GIb2 GND 26 VALUE = {(7.69M*V(VDD,VSS)+961.5M)}Rb2 26 GND 1 TC=-150URpsrr3 28 VSS 1MEGXD19 28 29 D_LIM1_0Rpsrr2 29 VSS 1GXD22 VDD 29 D_LIM1_0"GIb2_2 29 VSS 26 GND 22.22UXD21 VDD 27 D_LIM1_0R6 30 GND 1MEGXD20 30 27 D_LIM1_06GIb1 GND 31 VALUE = {(7.69M*V(27,GND)+961.5M)}Rb3 31 GND 1 TC=-350U"GIb1_2 27 GND 31 GND 20.85URpsrr1 27 GND 1GCS78 S7 S8 110FCS67 S6 S7 110FCS56 S5 S6 110FCS45 S4 S5 110FCS34 S3 S4 110FCS23 S2 S3 110FCS12 S1 S2 110F-XU1 GND VCC DGND DIGIFPWR_NOOPNODE_0!+ PARAMS: VOLTAGE=5 REFERENCE=0VPXU11 A0 A1 A2 EN E_32 E_25 E_24 E_23 E_22 E_21 E_20 E_19 VCC GND 3TO8DEC_T_EN_0,XU1_2 E_32 VSS GND D VDD S1 MUX36SW_0.ENDS$.SUBCKT MUX36SW_0 E VSS GND D VDD SXD2 VSS S D_DSN_0XD1 S VDD D_DSP_0QEDVTOp 30 VSS TABLE {V(VDD,VSS)} = (0,0) (9,1) (12,2.3) (30,7.87) (36,8.87)PEDVTOn VDD 31 TABLE {V(VDD,VSS)} = (0,0) (9,0) (12,950M) (30,3.8) (36,4.3)CD2 VDD D 1FCS2 VDD S 625.5FRGP VDD GP_29 100RGN GN_28 VSS 100 {VTHRES}), VOUTH, VOUTL ) } .Ends CompS .SUBCKT INV_A IN OUT DPWR DGND/+ PARAMS: RIN=1e9 VOUTH=5 VOUTL=0 VTHRES=1.4*$XU1 IN DGND OUT DGND CompInvS@+ PARAMS: RIN={RIN} VOUTH={VOUTH} VOUTL={VOUTL} VTHRES={VTHRES}.ENDS#.Subckt CompInvS IN1p IN1m OUT GND-+ PARAMS: RIN=1E9 VOUTH=5 VOUTL=0 VTHRES=1.4*RINp1 IN1p GND {RIN}RINm1 IN1m GND {RIN}GEOUT OUT GND VALUE= { IF ( (V(IN1p,IN1m) > {VTHRES}), VOUTL, VOUTH ) }.Ends CompInvS'.SUBCKT AND2_AD IN1 IN2 OUT DPWR DGNDM+ PARAMS: DLH = 0 DHL = 0 RIN=1e9 VOUTH=5 VOUTL=0 VTHRES1=1.4 VTHRES2=1.4*5XU1 IN1 DGND IN2 DGND OUT DGND Comp2InpAndSDLHp+ PARAMS: RIN={RIN} DELAYHL={DHL} DELAYLH={DLH} VOUTH={VOUTH} VOUTL={VOUTL} VTHRES1={VTHRES1} VTHRES2={VTHRES2}.ENDS4.Subckt Comp2InpAndSDLH IN1p IN1m IN2p IN2m OUT GNDR+ Params: RIN=1E9 ROUT=10 DELAYHL=0 DELAYLH=0 VOUTH=0 VOUTL=0 VTHRES1=0 VTHRES2=0**.Param Rdel = {IF ( Rout < 1, 1, Rout ) }&*.Param Cout={Tdel/(0.693*(Rdel+1u))}9.Param Tdhl = {IF ( (DELAYHL < 1e-9) , 1e-9, DELAYHL ) }9.Param Tdlh = {IF ( (DELAYLH < 1e-9) , 1e-9, DELAYLH ) }0.Param Cout={Sqrt(Tdhl*Tdlh)/(0.693*(Rdel+1u))}(.Param Rdlh={Rdel/Sqrt(Tdhl/(Tdlh+1p))}".Param Rdhl={Tdhl/(Tdlh+1p)*Rdlh}RINp1 IN1p GND {RIN}RINm1 IN1m GND {RIN}RINp2 IN2p GND {RIN}RINm2 IN2m GND {RIN}UEOUT OUTi GND VALUE= { IF ( (V(IN1p,IN1m) > {VTHRES1}) & (V(IN2p,IN2m) > {VTHRES2}),1+ VOUTH + Rdlh*I(EOUT), VOUTL + Rdhl*I(EOUT) ) }COUTi OUTi GND {COUT}LEOUT2 OUT gnd Value= { IF ( V(OUTi,GND) > (VOUTH+VOUTL)/2, VOUTH, VOUTL ) }.Ends Comp2InpAndSDLH+.SUBCKT AND3_AD IN1 IN2 IN3 OUT DPWR DGNDY+ PARAMS: DLH = 0 DHL = 0 RIN=1e9 VOUTH=5 VOUTL=0 VTHRES1=1.4 VTHRES2=1.4 VTHRES3=1.4*>XU1 IN1 DGND IN2 DGND IN3 DGND OUT DGND Comp3InpAndSDLH^+ PARAMS: RIN={RIN} DELAYHL={DHL} DELAYLH={DLH} VOUTH={VOUTH} VOUTL={VOUTL} VTHRES1={VTHRES1}&+ VTHRES2={VTHRES2} VTHRES3={VTHRES3}.ENDS>.Subckt Comp3InpAndSDLH IN1p IN1m IN2p IN2m IN3p IN3m OUT GND\+ Params: RIN=1E9 ROUT=10 DELAYHL=0 DELAYLH=0 VOUTH=5 VOUTL=0 VTHRES1=0 VTHRES2=0 VTHRES3=0**.Param Rdel = {IF ( Rout < 1, 1, Rout ) }&*.Param Cout={Tdel/(0.693*(Rdel+1u))}9.Param Tdhl = {IF ( (DELAYHL < 1e-9) , 1e-9, DELAYHL ) }9.Param Tdlh = {IF ( (DELAYLH < 1e-9) , 1e-9, DELAYLH ) }0.Param Cout={Sqrt(Tdhl*Tdlh)/(0.693*(Rdel+1u))}(.Param Rdlh={Rdel/Sqrt(Tdhl/(Tdlh+1p))}".Param Rdhl={Tdhl/(Tdlh+1p)*Rdlh}RINp1 IN1p GND {RIN}RINm1 IN1m GND {RIN}RINp2 IN2p GND {RIN}RINm2 IN2m GND {RIN}RINp3 IN3p GND {RIN}RINm3 IN3m GND {RIN}rEOUT OUTi gnd Value= { IF ( (V(IN1p,IN1m) > {VTHRES1}) & (V(IN2p,IN2m) > {VTHRES2}) & (V(IN3p,IN3m) > {VTHRES3}),2+ VOUTH + Rdlh*I(EOUT), VOUTL + Rdhl*I(EOUT) ) }COUTi OUTi GND {COUT}LEOUT2 OUT gnd Value= { IF ( V(OUTi,GND) > (VOUTH+VOUTL)/2, VOUTH, VOUTL ) }.Ends Comp3InpAndSDLH/.SUBCKT AND4_AD IN1 IN2 IN3 IN4 OUT DPWR DGNDe+ PARAMS: DLH = 0 DHL = 0 RIN=1e9 VOUTH=5 VOUTL=0 VTHRES1=1.4 VTHRES2=1.4 VTHRES3=1.4 VTHRES4=1.4*GXU1 IN1 DGND IN2 DGND IN3 DGND IN4 DGND OUT DGND Comp4InpAndSDLH^+ PARAMS: RIN={RIN} DELAYHL={DHL} DELAYLH={DLH} VOUTH={VOUTH} VOUTL={VOUTL} VTHRES1={VTHRES1}8+ VTHRES2={VTHRES2} VTHRES3={VTHRES3} VTHRES4={VTHRES4}.ENDSH.Subckt Comp4InpAndSDLH IN1p IN1m IN2p IN2m IN3p IN3m IN4p IN4m OUT GNDf+ Params: RIN=1E9 ROUT=10 DELAYHL=0 DELAYLH=0 VOUTH=5 VOUTL=0 VTHRES1=0 VTHRES2=0 VTHRES3=0 VTHRES4=0**.Param Rdel = {IF ( Rout < 1, 1, Rout ) }&*.Param Cout={Tdel/(0.693*(Rdel+1u))}9.Param Tdhl = {IF ( (DELAYHL < 1e-9) , 1e-9, DELAYHL ) }9.Param Tdlh = {IF ( (DELAYLH < 1e-9) , 1e-9, DELAYLH ) }0.Param Cout={Sqrt(Tdhl*Tdlh)/(0.693*(Rdel+1u))}(.Param Rdlh={Rdel/Sqrt(Tdhl/(Tdlh+1p))}".Param Rdhl={Tdhl/(Tdlh+1p)*Rdlh}RINp1 IN1p GND {RIN}RINm1 IN1m GND {RIN}RINp2 IN2p GND {RIN}RINm2 IN2m GND {RIN}RINp3 IN3p GND {RIN}RINm3 IN3m GND {RIN}RINp4 IN4p GND {RIN}RINm4 IN4m GND {RIN}sEOUT OUTi gnd Value= { IF ( (V(IN1p,IN1m) > {VTHRES1}) & (V(IN2p,IN2m) > {VTHRES2}) & (V(IN3p,IN3m) > {VTHRES3}) &N+ (V(IN4p,IN4m) > {VTHRES4}), VOUTH + Rdlh*I(EOUT), VOUTL + Rdhl*I(EOUT) ) }COUTi OUTi GND {COUT}LEOUT2 OUT gnd Value= { IF ( V(OUTi,GND) > (VOUTH+VOUTL)/2, VOUTH, VOUTL ) }.Ends Comp4InpAndSDLH.SUBCKT D_LIM1_0 1 2D1 1 2 D_Lim1.ENDS%.SUBCKT SWMOSN_0 D G S B Vdd Vss.Param T0={273.15}.Param Tnom={25+T0}.Param Vref = 12Rs S Si 1.00mRg G Gi 1.0Rd D Di 1Rb B Bi 1.00m6M1 Di2 Gi Si Bi SWMOS L=1u W=1u Vid Di1 Di20Ekvdd Kvdd 0 Value ={ Vref/Abs(V(Vdd,Vss)+1m) }&Gkid Di1 Si Value = {I(Vid)*V(Kvdd)}8.MODEL SWMOS NMOS (LEVEL=1 KP= 690u VTO=3.4 RDS=1e15 )Rd2 Di Di1 65.0 TC=6mQXCgd Gi Di Vdd Vss Kvdd GDCAP_Vdd2 Params: Cap=60f M1=0.5 VJ1=1.2 M2=0.5 VJ2=2.0.MODEL D_LIM1 D( IS=10F N=1.0 RS=100 XTI=0 AF=0 KF=0 EG=0.48)DADBA0A1S1AS2AENGNDS1BS2BS3AS4AVDDVSSS3BS4Bÿÿ