OBSSCircuit DescriptionV1.1010/02/94 20:07 CET.Component & analysis parameters of a circuit.TINA 9.3.80.273 SFB(c) Copyright 1993,94,95,96 DesignSoft Inc. All rights reserved. $Circuit$?[All]miny2=0 maxy2=100000 divsy2=4 scaley2=0miny4=0 maxy4=100000 divsy4=4 scaley4=0[VM1]miny2=0.2019994694maxy2=0.2019994706 divsy2=6 scaley2=0miny4=0.2019994694maxy4=0.2019994706 divsy4=6 scaley4=0 miny1=-1maxy1=1 divsy1=1 scaley1=0j??ƚ0zl C0 EMF|jM XRpArial0100000000000000000dv%  % RpArial#(1000000000000000128plE lEe9w`Aw@+\t9wx|EJݍ]@?EN?Edv%  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % &%  '%   66RR6R6% GG&%  6G6GG6GG6% %  66RR6R6% GG%  6G6GG6GG6% GG&%  6% % %  &%  %     T|4KCxA@A4L\Time (s) L4% % %  %     Td@!X0xA@A@!LT0.00Y!% ( GG%  6GPP6PYY6Ybb6bkk6ktt6t||6|666% % &%  %     Tl!0xA@A!LX1.00m !% ( %  6666666666% % &%  %     Tl!0xA@A!LX2.00m !% ( %  66  6 66&&6&..6.7767@@6@II6I% % &%  %     TlK!n0xA@AK!LX3.00m o!% ( RR%  6R[[6[dd6dmm6mvv6v~~6~6666% % &%  %     Tl!0xA@A!LX4.00m !% ( %  6666666666% % &%  %     Tl! 0xA@A!LX5.00m !!% ( %  6% GG6G% % %  &%  %     T`@OxA@A@LTVG1 @% % %  %     Tl;xA@ALX-1.00<% ( >>%  6GF~F~6G~FrFr6GrFeFe6GeFYFY6GYCMCM6GMFAFA6GAF5F56G5F(F(6G(FF6G% % &%  %     Td#;xA@A#LT1.00<% ( >>%  6G% % GG&%  6G% % %  &%  %     T`xA@ALTVM1 % % %  %     Tl ;xA@A LX-1.00< % ( >>%  6G% F F %  6G % FF%  6G% FF%  6G% FF%  6G% CC%  6G% FF%  6G% FF%  6G% FF%  6G% FF%  6G% % &%  %     Td#;xA@A#LT1.00<% ( >>%  6G% % GMGM&%  6HGHG6J@J@6K:K:6M4M46N.N.6P)P)6Q$Q$6S S 6TT6VV6WW6YY6ZZ6\\6]]6__6``6bb6cc6ee6ff6h h 6i$i$6k)k)6l/l/6n4n46o:o:6q@q@6rGrG6tMtM6uSuS6vZvZ6x`x`6yfyf6{l{l6|q|q6~v~v6zz6~~666666666666~~6zz6vv6qq6kk6ff6``6ZZ6SS6MM6GG6@@6::6446//6))6$$6  66666666666666  6$$6))6..6446::6@@6GG6MM6SS6ZZ6``6ff6kk6qq6vv6zz6~~666666666666~~6zz6vv6qq6ll6ff6``6ZZ6SS6MM6GG6@@6::6446//6))6$$6  666  6  6  666666666  6$$6))6..6 4 46!:!:6#@#@6$G$G6%M%M6'S'S6(Z(Z6*`*`6+f+f6-k-k6.q.q60v0v61z1z63~3~6446666776996::6<<6==6??6@@6BB6CC6E~E~6FzFz6HvHv6IqIq6KlKl6LfLf6N`N`6OZOZ6QSQS6RMRM6SGSG6U@U@6V:V:6X4X46Y/Y/6[)[)6\$\$6^ ^ 6__6aa6bb6dd6ee6gg6hh6jj6kk6mm6nn6pp6qq6s s 6t$t$6v)v)6w.w.6y4y46z:z:6|@|@6}G}G6~M~M6SS6ZZ6``6ff6kk6qq6vv6zz6~~666666666666~~6zz6vv6qq6ll6ff6``6ZZ6SS6MM6GG6@@6::6446//6))6$$6  66666666666666  6$$6))6..6446::6@@6GG6MM6SS6ZZ6``6ff6kk6qq6vv6zz6~~666666666666~~6zz6vv6qq6ll6ff6``6ZZ6SS6M% GG& %  6II6JJ6JJ6KK6LL6MM6NN6OO6QQ6SS6U U 6XX6ZZ6\\6^^6``6bb6dd6g g 6ii6kk6mm6pp6rr6tt6vv6xx6zz6}}66666666666666666666666  66666666666666666666666666666666666666666  6  6  666666  6666!!6$$6&&6((6**6,,6//6116336556776::6;;6==6??6BB6DD6FF6HH6JJ6MM6OO6QQ6SS6VV6XX6ZZ6\\6^^6a a 6cc6dd6ff6ii6kk6mm6oo6r r 6tt6vv6xx6zz6}}6666666666666666666666666666  66666666  666666666666666666666666666Rp MS Sans Serif EE (ETsEE  { Ts 8EE`E I8E``Tsu_EEE.T%Rdv%  % % % VER=1.0Font0=Verdana,14Font1=Verdana,14,BRect0=2,0,0,85,22Rect1=1,0,0,85,10Rect2=1,0,10,10,17Rect3=1,10,10,75,17Rect4=1,75,10,85,17Rect5=1,0,17,50,22Rect6=1,50,17,85,22Text0=0,2,2,TitleText1=0,2,11,SizeText2=0,2,18,DateText3=0,12,11,Document No.Text4=0,77,11,RevText5=0,52,18,SheetText6=0,70,18,ofField0=1,T,11,2,80Field1=1,T,11,5,80Field2=1,S,4,13,5Field3=1,T,14,13,40Field4=1,R,78,13,6Field5=1,D,12,18,30Field6=1,P,64,18,3Field7=1,A,77,18,3F0=Texas Instruments F1=TPA6211A1F5=10/10/2017F6=1F7=1x-@x- Arial=Please see inside the model netlist for parameters that are being modeled. Symbol????333333??;`0`0T_1362783020171010165208?``T_1362747020171010165208;`0`0T_136270B020171010165208?``T_13626CF020171010165208;````T_1362657020171010165208;````T_136261B020171010165208;T_1365CF7020171010165208;T_1365D33020171010165208CT_1365D6F020171010165208CT_1365DAB020171010165208;8 8 T_1365FC7020171010165208;8 8 T_1366003020171010165208?x x xT_1365F8B020171010165208?PPPT_1365C07020171010165208C00T_14C7F26020171010165216;0000T_14C7EEA020171010165216C00T_14C232F020171010165223;0000T_14C236B0201710101652230BTRCT1T_0B4B810020140625170130EE20_1P_2S (TRCT)? BR4T_0B4B988020140625170559R_AX300_W100 (R)@@?Y@ BR5T_0B4B9E6020140625170608R_AX300_W100 (R)@@?Y@DB@ V1T_0B4BCD6020140625171419 JP100 (V)@DB V2T_0B4BEAC020140625171450 JP100 (V) BR6T_12B3440020171006162559R_AX600_W200 (R).A@?Y@ BR7T_12B34FC020171006162610R_AX600_W200 (R).A@?Y@:B_hU1T_14BD5B7020171010164932  TPA6211A1 TPA6211A1]C:\Users\a0199733\AppData\Local\Temp\DesignSoft\{Tina9-Industrial-10012012-141134}\TPA6211A1SCK# TPA6211A1LabelkC`7d*INNP  @d*INPN.5)/1E11WR( @d*VDDD8   @d*CPVSSZ @ @d*SHDN_Z-SLOPE*V(V  @d*GNDDF)-SLOPE*V(V @ @d*OUTN(NVR,2)PWR( h @d*OUTP.25)*NLF/116 h @f`7g$ TPA6211A1Arial333333?ӵ9@ӵ9@ * TPA6211A1N*****************************************************************************J* (C) Copyright 2017 Texas Instruments Incorporated. All rights reserved.N*****************************************************************************H** This model is designed as an aid for customers of Texas Instruments.K** TI and its licensors and suppliers make no warranties, either expressedH** or implied, with respect to this model, including the warranties of F** merchantability or fitness for a particular purpose. The model isK** provided solely on an "as is" basis. The entire risk as to its quality)** and performance is with the customer.N******************************************************************************A** Released by: WEBENCH(R) Design Center, Texas Instruments Inc.* Part: TPA6211A1* Date: 10/10/2017* Model Type: All In One* Simulator: TINA* Simulator Version: 9* EVM Order Number: N/A * EVM Users Guide: N/A 5* Datasheet: SBOS555C JUNE 2011REVISED AUGUST 2016** Model Version: 2.0*N****************************************************************************** * Updates:** Version 1.0 : New. Release to the web. D* Version 2.0 : Improve or fix the the common mode output voltage. :* Improve ac frequency response and noise. * N****************************************************************************** * Notes: +* Gain, BW, VIL, VIH, Voffset, PSRR, CMR, J* Noise, I supply, I off. Resistance from SHUTDN to GND, input impedence.*N*****************************************************************************9.subckt TPA6211A1 INP INN CPVSS VDD GND SHDN_Z OUTP OUTN9XI0 SHDN_Z GND INP OUTP CPVSS OUTN INN VDD TPA6211A1_HT1.endsM.subckt NONDOMPOLE C VIN VOUT PARAMS: L=1e-12 Gain=1 C=226.7e-12 Rp=1e9 Rs=1L0 NET020 VOUT {L} E0 NET4 0 VIN 0 {Gain} C1 NET019 C {C} R3 VOUT C {Rp} R2 VOUT NET019 1e-3R1 NET020 NET4 {Rs} .ends NONDOMPOLEI.subckt VINRANGE2 VCC VEE VIH VIL VIN VOUT PARAMS: VIL=100e-3 VIH=100e-3XIDVIH VIH NET16 DiodeIdealXIDVIL NET16 VIL DiodeIdealR0 VIN NET16 1e-3V0 NET16 VOUT 0VIL1 VIL VEE {VIL} VIH1 VCC VIH {VIH} .ends VINRANGE2<.subckt TPA6211A1_CMFB_HT1 PD VCC VEE VOCM VOUT VOUTM VOUTP&GRCMFBAVG1 VOUTP NET8 VOUTP NET8 1e-6&GRCMFBAVG2 VOUTM NET8 VOUTM NET8 1e-6@XI1 VCC VEE VIH VIL NET029 NET026 VINRANGE2 PARAMS: VIL=0 VIH=0MXI5 NET026 NET8 0 NET080 VEE VCC NET043 GmItail PARAMS: Choice=2 Gm=25.13e-3P+ ITAILMAX_X1=3 ITAILMAX_Y1=10e-3 ITAILMAX_X2=5 ITAILMAX_Y2=10e-3 ITAILMIN_X1=34+ ITAILMIN_Y1=10e-3 ITAILMIN_X2=5 ITAILMIN_Y2=10e-3(XAHDLI44 PD VCC NET043 VCC VEE HPA_AND25XAHDLI41 NET026 NET047 NET031 VCC VEE HPA_COMP_IDEAL5XAHDLI42 NET050 NET026 NET036 VCC VEE HPA_COMP_IDEAL8XAHDLI43 NET031 NET036 CMFBVIHVILSIGNAL VCC VEE HPA_OR2VPROBE NET080 VOUTV22 VIH NET047 10e-3VCMFBOFFSET NET029 VOCM 1e-6V23 NET050 VIL 10e-3ICMFBINBIAS 0 VOCM 1e-15CCMFBNONDOMPOLE NET8 0 1e-18CCMFBIN VOCM 0 1.2e-12CCMFB VOUT 0 10e-9R8 NET8 0 1e9RCMFB VOUT 0 3.979e6RCMFBIN1 VCC VOCM 100e3RCMFBIN2 VEE VOCM 100e3R5 0 CMFBVIHVILSIGNAL 100e3.ends TPA6211A1_CMFB_HT1.subckt ANALOG_BUFFER VOUT VINR0 VIN 0 1e9R1 VOUT 0 1e9E0 VOUT 0 VIN 0 1.ends ANALOG_BUFFERD.subckt TPA6211A1_OUTPUTCIR_HT1 PD VCC VCCMAIN VEE VEEMAIN VIN VOUTDXI25 NET75 NET092 OutputCir_IscDiodeIdeal PARAMS: IS=10e-15 N=50e-3CXI23 NET79 NET76 OutputCir_IscDiodeIdeal PARAMS: IS=10e-15 N=50e-3LXIVOL VOL VEE VIMONINV OutputCir_VOHVOL PARAMS: VSUPPLYREF=0 VOUTvsIOUT_X1=P+ {ABS(0)} VOUTvsIOUT_Y1=370e-3 VOUTvsIOUT_X2= {ABS(-1)} VOUTvsIOUT_Y2=370e-3+ TXIVOH VCC VOH VIMON OutputCir_VOHVOL PARAMS: VSUPPLYREF=3.6 VOUTvsIOUT_X1= {ABS(0)}A+ VOUTvsIOUT_Y1=3.18 VOUTvsIOUT_X2= {ABS(1)} VOUTvsIOUT_Y2=3.18LXISOURCEVLIMIT NET064 NET76 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=100e-3R+ IscVsVsupply_X1=3 IscVsVsupply_Y1= {ABS(5)} IscVsVsupply_X2=5 IscVsVsupply_Y2= + {ABS(5)} ]XISINKVLIMIT NET047 NET092 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=100e-3 IscVsVsupply_X1=3L+ IscVsVsupply_Y1= {ABS(-5)} IscVsVsupply_X2=5 IscVsVsupply_Y2= {ABS(-5)} XI14 NET070 NET15 DiodeIdealXI15 NET068 VOL DiodeIdeal-XI0 VCCMAIN VEEMAIN VIMON PD OutputCir_ILOAD'HVIMONINV VIMONINV 0 VCURSINKDETECT 1#HVIMON VIMON 0 VCURSOURCEDETECT 1RVIMONINV VIMONINV 0 1e9R1 NET22 NET092 1e-3RVIMON VIMON 0 1e9RISC NET092 NET15 100e-3XI11 NET76 NET15 ANALOG_BUFFERXI2 NET22 VIN ANALOG_BUFFERVPROBE3 NET070 VOH 0V3 NET79 NET047 0V4 NET75 NET064 0VPROBE4 NET068 NET15 0VCURSOURCEDETECT NET15 NET34 0VCURSINKDETECT VOUT NET34 0.ends TPA6211A1_OUTPUTCIR_HT1D.subckt DOMPOLE A B C PARAMS: R2=1e-3 R1=2.653e6 C2=1e-15 C1=10e-12R2 NET7 A {R2} R1 B A {R1} C2 NET7 C {C2} C1 A B {C1} .ends DOMPOLEA.subckt VINRANGE1 VCC VEE VIN VOUT PARAMS: VIL=100e-3 VIH=100e-3XIDVIH NET12 NET16 DiodeIdealXIDVIL NET16 NET20 DiodeIdealR0 VIN NET16 1e-3V0 NET16 VOUT 0VIL NET20 VEE {VIL} VIH VCC NET12 {VIH} .ends VINRANGE1F.subckt RECOVERYCIRCUIT A B VCC VEE PARAMS: VRecL=-10e-3 VRecH=-10e-3XI2 NET8 NET014 DiodeIdealXI3 NET014 NET9 DiodeIdealVBRIDGE NET014 A 0 VPROBE A B 0VRECL NET9 VEE {VRecL} VRECH VCC NET8 {VRecH} .ends RECOVERYCIRCUITN.subckt ZIN IN1 IN2 OUT1 OUT2 PARAMS: R5=100e-3 R4=100e-3 C3=50e-15 C2=50e-15#+ C1=50e-15 R2=10e9 R1=10e9 R3=1e9R5 IN2 OUT2 {R5} R4 IN1 OUT1 {R4} C3 OUT1 OUT2 {C3} C2 OUT2 0 {C2} C1 OUT1 0 {C1} GR2 OUT2 0 OUT2 0 {1/R2} GR1 0 OUT1 0 OUT1 {1/R1} !GR3 OUT1 OUT2 OUT1 OUT2 {1/R3} .ends ZIN@.subckt TPA6211A1_AMP_HT1 VOUTM VOUTP VOCM VINM VINP VEE VCC PDOXI27 NET056 NET52 NET62 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=5e-6 Rp=500e6 Rs=1OXI26 NET056 NET51 NET61 NONDOMPOLE PARAMS: L=1e-12 Gain=1 C=5e-6 Rp=500e6 Rs=1RXI32 POWER VCC_INT VEE_INT VOCM CMFB_HIGHZ VOUTM_INT VOUTP_INT TPA6211A1_CMFB_HT1KXI31 POWER VCC_INT VCC VEE_INT VEE NET72 VOUTM_INT TPA6211A1_OUTPUTCIR_HT1KXI30 POWER VCC_INT VCC VEE_INT VEE NET71 VOUTP_INT TPA6211A1_OUTPUTCIR_HT1NXI16 HIGHZ_VOUTM NET071 0 DOMPOLE PARAMS: R2=1e-3 R1=9.947e6 C2=1e-15 C1=4e-9NXI11 HIGHZ_VOUTP NET071 0 DOMPOLE PARAMS: R2=1e-3 R1=9.947e6 C2=1e-15 C1=4e-9PXI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=1e-15 Ioffset=100e-18 TA=25A+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=-9.925e-6 Ibiasm=-10.075e-6LXI24 VCC_INT VEE_INT NET21 VINP_INT VINRANGE1 PARAMS: VIL=500e-3 VIH=800e-3LXI25 VCC_INT VEE_INT NET22 VINM_INT VINRANGE1 PARAMS: VIL=500e-3 VIH=800e-3MXI40 VCC VEE POWER VEE_INT VCC_INT Iq PARAMS: IOFF=1e-6 ION_X1=0 ION_Y1=4e-3F+ ION_X2=1.6 ION_Y2=4e-3 ION_X3=1.9 ION_Y3=4e-3 ION_X4=12 ION_Y4=4e-3SXI29 NET42 NET52 VCC_INT VEE_INT RECOVERYCIRCUIT PARAMS: VRecL=-10e-3 VRecH=-10e-3SXI28 NET41 NET51 VCC_INT VEE_INT RECOVERYCIRCUIT PARAMS: VRecL=-10e-3 VRecH=-10e-3RXI43 VINP_INT VINM_INT NET32 NET31 VEE_INT VCC_INT POWER GmItail PARAMS: Choice=2N+ Gm=5.027e-3 ITAILMAX_X1=3 ITAILMAX_Y1=20e-3 ITAILMAX_X2=5 ITAILMAX_Y2=20e-3B+ ITAILMIN_X1=3 ITAILMIN_Y1=20e-3 ITAILMIN_X2=5 ITAILMIN_Y2=20e-3@XI59 NET21 NET11 Vinoffset PARAMS: TA=25 VOS=300e-6 DRIFT=1e-12WXI21 NET12 NET22 NET12 CMRR PARAMS: CMRR_DC=-65 CMRR_f3dB=10e3 CMRR_f3dB_FudgeFactor=1eXI19 VCC_INT VEE_INT NET2 NET12 PSRR PARAMS: PSRRP_DC=-93 PSRRP_f3dB=8e3 PSRRN_DC=-93 PSRRN_f3dB=8e35XI18 NET11 0 Inoise PARAMS: X=1e-3 Y=100e-3 Z=100e-34XI47 NET2 0 Inoise PARAMS: X=1e-3 Y=100e-3 Z=100e-34XI17 NET1 NET11 Vnoise PARAMS: X=1e-6 Y=22.5 Z=22.5MXI33 VINP VINM NET1 NET2 ZIN PARAMS: R5=100e-3 R4=100e-3 C3=50e-15 C2=50e-15$+ C1=50e-15 R2=10e9 R1=10e9 R3=40e3RNONDOMPOLEBIAS NET056 0 1e9R0 VCC_INT PD 10e61XAHDLINV3 PD PDINV VCC_INT VEE_INT HPA_INV_IDEAL4XAHDLINV0 PDINV POWER VCC_INT VEE_INT HPA_INV_IDEALVPROBE4 CMFB_HIGHZ NET071VPROBE3A VOUTP_INT VOUTP 0V9 NET61 NET71 0V8 NET62 NET72 0VPROBE3B VOUTM_INT VOUTM 0VPROBE1A NET31 HIGHZ_VOUTPVPROBE2A HIGHZ_VOUTP NET41VPROBE2B HIGHZ_VOUTM NET42VPROBE1B NET32 HIGHZ_VOUTMXI12 VCC_INT VCC ANALOG_BUFFERXI13 VEE_INT VEE ANALOG_BUFFER.ends TPA6211A1_AMP_HT1=.subckt TPA6211A1_HT1 SHDN_Z GND INP OUTP CPVSS OUTN INN VDDC0 CPVSS 0 1e-12E1 NET057 0 CPVSS 0 1E0 NET32 0 VDD 0 500e-3R0 INN OUTP 40e3R1 INP OUTN 40e3R3 SHDN_Z 0 100e3R4 NET32 CPVSS 1e6>XI0 OUTN OUTP NET057 INN INP GND VDD SHDN_Z TPA6211A1_AMP_HT1.ends TPA6211A1_HT1.subckt BALUN V VCM VN VPR9 V NET023 1e-6R4 NET035 VCM 1e-6R5 NET023 NET016 1e-6R3 NET027 VN 1e-6R6 0 NET021 1e-6R7 NET023 NET019 1e-6R8 0 NET017 1e-6R1 NET022 VP 1e-6;XTRANSFORMEREK0 NET016 NET021 NET022 NET035 TRANSFORMEREK0;XTRANSFORMEREK1 NET019 NET017 NET035 NET027 TRANSFORMEREK1 .ends BALUN.SUBCKT HPA_OR2 1 2 3 VDD VSScE1 4 0 VALUE = { IF( ((V(1)< (V(VDD)+V(VSS))/2 ) & (V(2)< (V(VDD)+V(VSS))/2 )), V(VSS), V(VDD) ) } R1 4 3 1 C1 3 0 1e-12.ENDS.SUBCKT HPA_AND2 1 2 3 VDD VSScE1 4 0 VALUE = { IF( ((V(1)> (V(VDD)+V(VSS))/2 ) & (V(2)> (V(VDD)+V(VSS))/2 )), V(VDD), V(VSS) ) } R1 4 3 1 C1 3 0 1e-12.ENDS".SUBCKT HPA_INV_IDEAL 1 2 VDD VSSAE1 2 0 VALUE = { IF( V(1)> (V(VDD)+V(VSS))/2, V(VSS), V(VDD) ) }.ENDS+.SUBCKT HPA_COMP_IDEAL INP INN OUT VDD VSS=E1 OUT 0 VALUE = { IF( (V(INP) > V(INN)), V(VDD), V(VSS) ) }.ENDS.SUBCKT TRANSFORMEREK0 1 2 3 4 K1 L1 L2 0.5 L1 1 2 10uH L2 3 4 10uH.ends.SUBCKT TRANSFORMEREK1 1 2 3 4 K1 L1 L2 0.5 L1 1 2 10uH L2 3 4 10uH.ends.SUBCKT AVG VIN1 VIN2 VOUT0E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 }.ENDS.SUBCKT CMRR A B C PARAMS:+ CMRR_DC = -100+ CMRR_f3dB = 50e3+ CMRR_f3dB_FudgeFactor = 3.4 .PARAM CMRR = {0-CMRR_DC}5.PARAM FCMRR = {CMRR_f3dB * CMRR_f3dB_FudgeFactor}:X1 A B C 0 CMRR_NEW PARAMS: CMRR = {CMRR} FCMRR = {FCMRR}.ENDS.SUBCKT DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT DomPoleBias VIN1 VIN2 VOUT5E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 * 1/2} R1 VOUT 0 1G.ENDS:.SUBCKT GmItail Vinp Vinm Ioutp Ioutm VEE VCC PD PARAMS:+ Choice = 2+ Gm = 3.77e-2+ ITAILMAX_X1 = { 3.0 }+ ITAILMAX_Y1 = { 10m }+ ITAILMAX_X2 = { 5.0 }+ ITAILMAX_Y2 = { 10m }+ ITAILMIN_X1 = { 3.0 }+ ITAILMIN_Y1 = { 10m }+ ITAILMIN_X2 = { 5.0 }+ ITAILMIN_Y2 = { 10m }..PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }..PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }..PARAM Choice3 = { IF ( Choice == 3, 1, 0 ) }..PARAM Choice4 = { IF ( Choice == 4, 1, 0 ) }..PARAM Choice5 = { IF ( Choice == 5, 1, 0 ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1.PARAM ITAILMAX_SLOPE = D+ { ( ITAILMAX_Y2 - ITAILMAX_Y1 ) / ( ITAILMAX_X2 - ITAILMAX_X1 ) }.PARAM ITAILMAX_INTCP = 1+ { ITAILMAX_Y1 - ITAILMAX_SLOPE * ITAILMAX_X1 }EITAILMAX ITAILMAX 0 VALUE = 4+ { ITAILMAX_SLOPE * V(VCC,VEE) + ITAILMAX_INTCP }.PARAM ITAILMIN_SLOPE = D+ { ( ITAILMIN_Y2 - ITAILMIN_Y1 ) / ( ITAILMIN_X2 - ITAILMIN_X1 ) }.PARAM ITAILMIN_INTCP = 1+ { ITAILMIN_Y1 - ITAILMIN_SLOPE * ITAILMIN_X1 }EITAILMIN ITAILMIN 0 VALUE = 4+ { ITAILMIN_SLOPE * V(VCC,VEE) + ITAILMIN_INTCP },G1 IOUTP IOUTM VALUE = { ( 1-V(PDINV) ) * (J+ Choice1 * ( LIMIT ( Gm * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) +U+ Choice2 * ( Gm * (V(ITAILMAX)/Gm) * TANH( V(VINP,VINM) / (V(ITAILMAX)/Gm) ) ) + c+ Choice3 * ( Gm * V(VINP,VINM) / ( 1 + Gm/V(ITAILMAX) * ABS( V(VINP,VINM) ) ) ) + M+ Choice4 * ( LIMIT ( ( Gm * EXP( 1 * ABS(V(VINP,VINM)) ) ) * V(VINP,VINM) ,.+ -V(ITAILMIN), V(ITAILMAX) ) ) +7+ Choice5 * ( ( Gm * EXP( 1 * ABS(V(VINP,VINM)) ) ) * E+ (V(ITAILMAX)/( Gm * EXP( 1 * ABS(V(VINP,VINM)) ) )) * $+ TANH( V(VINP,VINM) / R+ ( V(ITAILMAX)/( Gm * EXP( 1 * ABS(V(VINP,VINM)) ) ) ) ) ) ++ 0 ) }.ENDS .SUBCKT Ibias VINP VINM PARAMS:+ Choice = 1+ Ibias = -10u+ Ioffset = 150n+ TA = 25+ IbiasDrift = 0+ IoffsetDrift = 0+ Ibiasp = -9.925u+ Ibiasm = -10.075u..PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }..PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }C.PARAM Ib = { Choice1 * Ibias + Choice2 * (Ibiasp + Ibiasm)/2 }D.PARAM Io = { Choice1 * Ioffset + Choice2 * ABS(Ibiasp - Ibiasm) } FEIb Ib 0 VALUE = { IbiasDrift * TEMP + ( Ib - IbiasDrift * TA ) }FEIo Io 0 VALUE = { IoffsetDrift * TEMP + ( Io - IoffsetDrift * TA ) }(GIbp VINP 0 VALUE = { V(Ib) + V(Io)/2 }(GIbm VINM 0 VALUE = { V(Ib) - V(Io)/2 }.ENDS.SUBCKT Inoise A B PARAMS:+ X = { 1m }+ Y = { 100 } + Z = { 1 } ION_X2 & V(VCC,VEE) <= ION_X3, 1, 0 ) }REION_SEG3 ION_SEG3 0 VALUE = { IF ( V(VCC,VEE) > ION_X3 , 1, 0 ) }F.PARAM ION_SEG1_SLOPE = { ( ION_Y2 - ION_Y1 ) / ( ION_X2 - ION_X1 ) }=.PARAM ION_SEG1_INTCP = { ION_Y1 - ION_SEG1_SLOPE * ION_X1 }F.PARAM ION_SEG2_SLOPE = { ( ION_Y3 - ION_Y2 ) / ( ION_X3 - ION_X2 ) }=.PARAM ION_SEG2_INTCP = { ION_Y2 - ION_SEG2_SLOPE * ION_X2 }F.PARAM ION_SEG3_SLOPE = { ( ION_Y4 - ION_Y3 ) / ( ION_X4 - ION_X3 ) }=.PARAM ION_SEG3_INTCP = { ION_Y3 - ION_SEG3_SLOPE * ION_X3 }WEION ION 0 VALUE = { V(ION_SEG1) * ( ION_SEG1_SLOPE * V(VCC,VEE) + ION_SEG1_INTCP ) +E+ V(ION_SEG2) * ( ION_SEG2_SLOPE * V(VCC,VEE) + ION_SEG2_INTCP ) +G+ V(ION_SEG3) * ( ION_SEG3_SLOPE * V(VCC,VEE) + ION_SEG3_INTCP ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1KG1 VCCMAIN VEEMAIN VALUE = { V(ION) * ( 1-V(PDINV) ) + IOFF * V(PDINV) } .ends*.SUBCKT OutputCir_ILOAD VDD VSS VIMON PD$X1 PD PDINV VDD VSS LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1AG1 VDD 0 VALUE = {IF(V(VIMON) >= 0, V(VIMON)*( 1-V(PDINV) ), 0)}AG2 VSS 0 VALUE = {IF(V(VIMON) < 0, V(VIMON)*( 1-V(PDINV) ), 0)}.ENDS1.SUBCKT OutputCir_IscDiodeIdeal NEG POS PARAMS: + IS = 1E-14 + N = 50mXG1 POS NEG_INT VALUE = { IF ( V(POS,NEG_INT) <= 0 , IS, IS * ( EXP ( V(POS,NEG_INT)/25m+ * 1/N ) - 0 ) ) }V1 NEG_INT NEG {-N*0.8}.ENDS0.SUBCKT OutputCir_IscVlimit A B VCC VEE PARAMS:+RIsc = { 1 }+IscVsVsupply_X1 = { 3.0 }+IscVsVsupply_Y1 = { 75m }+IscVsVsupply_X2 = { 5.0 }+IscVsVsupply_Y2 = { 100m }.PARAM IscVsVsupply_SLOPE = T+ { ( IscVsVsupply_Y2 - IscVsVsupply_Y1 ) / ( IscVsVsupply_X2 - IscVsVsupply_X1 ) }.PARAM IscVsVsupply_INTCP = =+ { IscVsVsupply_Y1 - IscVsVsupply_SLOPE * IscVsVsupply_X1 }&EIscVsVsupply IscVsVsupply 0 VALUE = <+ { IscVsVsupply_SLOPE * V(VCC,VEE) + IscVsVsupply_INTCP }*E1 A B VALUE = { V(IscVsVsupply) * RIsc }.ENDSO.SUBCKT OutputCir_RecoveryAssist VINP VINM IOUTP IOUTM VCC VEE RecoverySignal*X1 RecoverySignal RS VCC VEE LOGIC1 0 DLSVLOGIC1 LOGIC1 0 1NG1 IOUTP IOUTM VALUE = { LIMIT ( 1m * V(VINP,VINM) * V(RS) , -100m, 100m ) }.ENDS).SUBCKT OutputCir_Rout B A VIMON PARAMS:+ Ro_Iout_0A = 100 + RIsc = 1 + Isc = 100m+ Islope_const = 1/100'.PARAM Islope = { Islope_const * Isc }`G1 A B VALUE = { V(A,B) * 1 / ( (Ro_Iout_0A - RIsc) * Islope / ( Islope + ABS(V(VIMON)) ) ) }.ENDS+.SUBCKT OutputCir_VOHVOLDiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS(.SUBCKT OutputCir_VOHVOL A B C PARAMS:+ VSUPPLYREF = {2.5} + VOUTvsIOUT_X1 = { ABS(0) }+ VOUTvsIOUT_Y1 = { 2.4 } + VOUTvsIOUT_X2 = { ABS(100m) }+ VOUTvsIOUT_Y2 = { 2.1 }*.PARAM VDROPvsIOUT_X1 = { VOUTvsIOUT_X1 }:.PARAM VDROPvsIOUT_Y1 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y1) }*.PARAM VDROPvsIOUT_X2 = { VOUTvsIOUT_X2 }:.PARAM VDROPvsIOUT_Y2 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y2) }.PARAM VDROPvsIOUT_SLOPE = P+ { ( VDROPvsIOUT_Y2 - VDROPvsIOUT_Y1 ) / ( VDROPvsIOUT_X2 - VDROPvsIOUT_X1 ) }.PARAM VDROPvsIOUT_INTCP = :+ { VDROPvsIOUT_Y1 - VDROPvsIOUT_SLOPE * VDROPvsIOUT_X1 }$EVDROPvsIOUT VDROPvsIOUT 0 VALUE = 4+ { VDROPvsIOUT_SLOPE * V(C) + VDROPvsIOUT_INTCP }"E1 A B VALUE = { V(VDROPvsIOUT) }.ENDS!.SUBCKT PSRR VDD VSS A B PARAMS:+ PSRRP_DC = -100+ PSRRP_f3dB = 100k+ PSRRN_DC = -90+ PSRRN_f3dB = 90k".PARAM PSRRP = {0-PSRRP_DC}".PARAM PSRRN = {0-PSRRN_DC}".PARAM FPSRRP = {PSRRP_f3dB}".PARAM FPSRRN = {PSRRN_f3dB}'X1 VDD VSS A B 0 PSRR_DUAL_NEW PARAMS:$+ PSRRP = {PSRRP} FPSRRP = {FPSRRP}$+ PSRRN = {PSRRN} FPSRRN = {FPSRRN}.ENDS+.SUBCKT RecoveryCircuit_DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT Vinoffset POS NEG PARAMS: + TA = 25+ VOS = 500u+ DRIFT = 10u ?E1 POS NEG VALUE = { DRIFT * TEMP + ( VOS - DRIFT * TA ) }.ENDS$.SUBCKT Vinrange_DiodeIdeal NEG POSCG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*100k ) }R0 POS NEG 1000G.ENDS.SUBCKT Vnoise A B PARAMS:+ X = { 1m }+ Y = { 100 } + Z = { 5 }9X1 A B VNSE PARAMS: NLF = { Y } FLW = { X } NVR = { Z }.ENDS6.SUBCKT VNSE 1 2 PARAMS: NLF = 10 FLW = 4 NVR = 4.6$.PARAM GLF={PWR(FLW,0.25)*NLF/1164}.PARAM RNV={1.184*PWR(NVR,2)}/.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVNE1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS=.SUBCKT FEMT 1 2 PARAMS: NLFF = 0.1 FLWF = 0.001 NVRF = 0.1'.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164} .PARAM RNVF={1.184*PWR(NVRF,2)}1.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVNF D2 8 0 DVNFE1 3 6 7 8 {GLFF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10R4 5 0 {RNVF}R5 5 0 {RNVF} R6 3 4 1E9 R7 4 0 1E9G1 1 2 3 4 1E-6 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDSL.SUBCKT PSRR_SINGLE VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}E1 VO VI 1 GNDF 1C2 VDD VSS 10P.ENDSP.SUBCKT PSRR_SINGLE_NEW VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VO VI 1a GNDF 1C2 VDD VSS 10P.ENDS,.SUBCKT PSRR_DUAL VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}*E1 VO VI VALUE = {V(1,GNDF) + V(3,GNDF)}C3 VDD VSS 10P.ENDS0.SUBCKT PSRR_DUAL_NEW VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}EC 301 GNDF 3 GNDF 1(GRC 301 302 VALUE = { V(301,302)/1e6 }CC 302 GNDF 1e3ED 3 3a VALUE = {V(302,GNDF)},E1 VO VI VALUE = {V(1a,GNDF) + V(3a,GNDF)}C3 VDD VSS 10P.ENDSC.SUBCKT CMRR_OLD VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}E1 VI VO 1 GNDF 1.ENDSB.SUBCKT CMRR_NEW VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}EA 101 GNDF 1 GNDF 1&GRA 101 102 VALUE = {V(101,102)/1e6}CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VI VO 1a GNDF 1.ENDS0.SUBCKT DLS 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) < (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS3.SUBCKT DLSINV 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) > (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS#.SUBCKT SWITCH_IDEAL A B C PARAMS:+ Ron = 100m+ Roff = 0.1GYG1 A B VALUE = { V(A,B) * 1 / ( Roff/2 * TANH( 0 - ( 20*V(C) - 5 ) ) + Roff/2 + Ron ) } R1 A 0 1000G R2 B 0 1000G.ENDS&.MODEL VINRANGE_DIDEAL D N=1m'.MODEL RECOVERYCIRCUIT_DIDEAL D N=1m (.MODEL OUTPUTCIR_ISC_DIDEAL D N=0.1m'.MODEL OUTPUTCIR_VOHVOL_DIDEAL D N=1m .MODEL DBASIC DINNINPVDDCPVSSSHDN_ZGNDOUTNOUTP B0R2T_14BD6D1020171010165200R_AX300_W100 (R) @@?Y@ B`C1T_14BD673020171010165200C_RAD200_L300_W100_Red (C)V瞯<@eAY@? B0C7T_14BD8A7020171010165249C_RAD200_L300_W100_Red (C)|=@eAY@?BPVG1T_14E1A98020171010165401 JP100 (VG)?@@V"Br VM1T_10781E0020171010175437 Vmet (VM)Bn@ VDDT_0B4BD92020140625171444 NOPCB (J)Bn GNDT_0B4BE4E020140625171450 NOPCB (J)Bn VDDT_12B349E020171006162607 NOPCB (J)Bn0 GNDT_12B35B8020171006162622 NOPCB (J)Bo VmidT_12B3616020171006162629 NOPCB (J)Bo VmidT_161379F020171006163310 NOPCB (J)Bn VDDT_14BD72F020171010165228 NOPCB (J)Bn VDDT_14BD78D020171010165232 NOPCB (J)Bn0 GNDT_14BD7EB020171010165238 NOPCB (J)Bf@ T_0B4BD34020140625171423 NOPCB (GND)Bf T_0B4BDF0020140625171450 NOPCB (GND)BfP T_0B16B2C020160407162306 NOPCB (GND)Bfx T_0B16ACE020160407162306 NOPCB (GND)BfXT_14BD849020171010165249 NOPCB (GND)8?_-_@Eư>?ư>'dd?Y@[ddd$@4@.A.A@eAMbP?@@?{Gzt?ư> $ 4@D@ =B?& .>??ư>ư>ư>ư>ư>ư>?I@?I@?I@& .>#i;@& .>-q=ư>MbP?-q=MbP?vIh%<=@@D@& .>?MbP?4@?{Gz?ꌠ9Y>)F@?+= _BKH9$@Y@& .>ư>?.AMbP??????I@Default analysis parameters. These parameters establish convergence and sufficient accuracy for most circuits. In case of convergence or accuracy problems click on the "hand " button to Open other parameter sets.?Xd I@nMbP?{Gz?{Gz?MbP????|=Hz>}Ô%ITNoname